HPSS

Programmer's
Reference Guide,
Volume 1

High Performance Storage System
Release 4.2

December 2000

0 1992-2000 International Business Machines Corporation, The Regents of the University of California,
Sandia Corporation, Lockheed Martin Energy Research Corporation, and NASA Langeley Research
Center.

All rights reserved.

Portions of this work were produced by the University of California,Lawrence Livermore National
Laboratory (LLNL) under Contract No. W-7405-ENG-48 with the U.S. Department of Energy (DOE), by
the University of California, Lawrence Berkeley National Laboratory (LBNL) under Contract No.
DEACO03776SF00098 with DOE, by the University of California, Los Alamos National Laboratory (LANL)
under Contract No. W-7405-ENG-36 with DOE, by Sandia Corporation, Sandia National Laboratories
(SNL) under Contract No. DEAC0494AL85000 with DOE, and Lockheed Martin Energy Research
Corporation, Oak Ridge National Laboratory (ORNL) under Contract No. DE-AC05-960R22464 with
DOE. The U.S. Government has certain reserved rights under its prime contracts with the Laboratories.

DISCLAIMER
Portions of this software were sponsored by an agency of the United States Government. Neither the
United States, DOE, The Regents of the University of California, Sandia Corporation, Lockheed Martin
Energy Research Corporation, nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights.

Printed in the United States of America.

HPSS Release 4.2
December 2000

High Performance Storage System is a registered trademark of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.

AlX and RISC/6000 are trademarks of International Business Machines Corporation.

Encina is a registered trademark of Transarc Corporation.

UNIX is a registered trademark of Unix System Laboratories, Inc.

Sammi is a trademark of Scientific Software Intercomp.

NFS and Network File System are trademarks of Sun Microsystems, Inc.

DST is a trademark of Ampex Systems Corporation.

ACLS is a trademark of Storage Technology Corporation.

Other brands and product names appearing herein may be trademarks or registered trademarks of third parties.

-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Table of Contents

(=] = T O >9
(O g =T o1 (=] g @ V=T V= U PPPRERRR 1-1
I O 1= o A = OO 1-1
L1 L PUIOSE ..ttt sttt bbbttt s h e bt h e e bt e b ekt e b e e bt e s b e nb e e nneabeenneeneennas 1-1
1.1.2. COMPONEINTS ..ottt ettt he et bt e b e b e e nbe s b e e be e b b e b e es b e abeenneebeenneeneannas 1-1
IO R T 10 1) 1 = V1 | £SO 1-3
IO 0 I | o] > T USSR 1-3
1.1.5. ENVIronmMent VariableS ...t 1-3
1.2. Supplemental Data Transfer FUNCLIONSccooiiiiiiiiincr e 1-5
1.2, 0 PUIOSE ..ttt ettt sttt b et b et h et b e bbb e bt e b e e bt e b b e bt e s b e eb e e nneebeenneeneannas 1-5
1.2.2. COMPONEINTS ..ottt sttt b e he e s b e e e e be e bt s b e e beeb b e b e esbenbeenreabeenneaneeneas 1-6
1.2.2.1. IPI-3 Data TranSTer ..ottt bbb 1-6
1.2.2.2. Mover Socket (Parallel TCP/IP Data Transfer)........ccccoocovvnenieieiicincnennen, 1-6
1.2.2.3. MOVEN PrOtOCOL.......coiiiiicc ettt et 1-6
1.2.2.4. Parallel Data Transfer ...ttt 1-6
1.2.2.5. NEIWOIrK OPLIONScooiiiiiciicesiesee e st e e e 1-6
I T 0o g) 4 - ST 1-6
I S Yo - 1RSSR 1-7
1.3. NON-DCE CHENT APttt ettt sttt e s eseeneaneanenres 1-7
IO 20 I [o 01 USSR 1-7
IR 0 0 o] o To] =T o | USSR 1-7
IR TR T o) 4 - 1 S SP 1-7
IR 3 S I o - 1= RSP 1-7
1.3.5. ENVIronmMeNnt VariabIeS ...ttt 1-8
1.4. 64-bit Arithmetic LIBIary ..o e ne s 1-8
O [o T 1 USSR 1-8
R 0 o] o To] =T o | SRS 1-9
I T 0o g) 4 - SRS 1-10
O Yo - 1= RSP 1-10
L5, IMIPI-TO AP ettt bbbt bbbttt 1-10
IO T8 I U [o 01 USSR 1-10
IO T0Z O 0 T o 1] o To] 1T o | USSR 1-11
LT T 0o g) 4 - SRS 1-12
IO S I o - 1= RSP SSP 1-12
1.5.5. ENVIronmMent VariabIES ...ttt 1-13
LT} (0] =T [@0 o= o £SO 1-14
1.6.1. ClasS Of SEIVICE ...c.vcuvciiiicice ettt sttt sttt e e e e eneerenne e 1-14
G I S (o =T [O TSP 1-14
1.6.3. StOrage HiIErarChy ..ottt st e reene e 1-15
LT S T T= N o T RSP 1-15
R O LT | S TSP P PRSP P PPROTR 1-15
1.8. ACCESS CONLIOI LISt AP ..ottt ettt e s e eneerenrs 1-16
IO B0 [e 01 SR 1-16
IS 0 0 o] o To] =T o | USSR 1-17
1.8.3. CONSIIAINTS.cuiiiiiiie ettt sttt st et ee st et e s et e e eneereeneeneerenneens 1-17
I T S I o] - 1RSSR 1-17
1.9, DCE USEI ACCOUNLES ...oeutietieiieuiestteiestteseesseestesseesteaseesseessssseessesseessesssesssasesssessesssessssssesssessenssesseenes 1-18
HPSS Programmer’s Reference, Vol. 1 December 2000 -3

Release 4.2, Revision 1

Chapter 2. ClIent AP] FUNCHIONS...........iiiiiiiiiiee ittt e s et b e s e e e e b e e e e enees 2-1

2.1, AP INTEITACES ..ottt bbbt b ettt bbb b 2-1
2.0, NPSS_AACCESS ...evieteniete ettt sttt ittt et bbbkt b bbbt bbb bbb 2-3
2.1.2. hPSS_ACCLCOAETONAIME ...ttt bbb 2-4
2.1.3. hPSS_ACCINAMETOCOUE ...ttt 2-5
2,14, NPSS_CRNACCT.....eeuiitieicie bbbt bbb 2-6
2.1.5. hPpSS_ChacCCtBYINGAIMIEc.oouiiiiieiiie bbb 2-7
2.1.8. NPSS_CNAIE 1.ttt bbb 2-9
2.1.7. NPSS_CRIMOA ..ottt bbbt 2-10
2.1.8. NPSS_CROWWN ..otttk bbbt 2-11
2.1.9. NPSS_CRIOOLeviiiiee bbbttt bbb 2-13
2.1.10. NPSS_CHENTAPIRESEL ..ottt 2-15
2,100, NPSS_CIOSE ...ttt bbb bbbt 2-16
2.1.12. NPSS_CIOSEAIN ...ttt bbb 2-17
2.1.13. hpsS_CoNVErtldSTONEGMIEScccvuiiiiiiiieeee et 2-18
2.1.14. hpss_CoNVErtNameESTOIASccoiiiiiiieee e 2-20
2.1.15. NPSS_CIBALEveveiieieiete ettt bbbttt bbb 2-22
2.1.16. NPSS_DEIETEACKL ..ottt bbb 2-24
2,007, NPSS_FCIBAN ...t 2-26
2.1.18. NPSS_FCIEAIOFFSEL ...c.ecviiieiieiee e 2-27
2.1.19. hpsS_FIlEGELALIIIDULEScoiviiiiiiee e 2-28
2.1.20. hpss_FileGetX ALIIIDULES ..o 2-29
2.1.21. hPSS_FIleSEtALIIIDULEScveiiieiiriee e 2-31
2.1.22. NPSS_FIlESELCIEALE ... v 2-34
2.1.23. NPSS_FIESEIDEIELE ... 2-36
2.1.24. hpss_FileSetGetAIIIDULES ..o 2-37
2.1.25. NPSS_FIESELLISTAILcooiiiee e 2-39
2.1.26. hpss_FileSetSEtALIIIDULES ..o 2-41
2.1.27. NPSS_FPrEallOCALE ..o 2-43
2.1.28. NPSS_FSTAL ...ttt 2-44
2.1.29. NPSS_FLIUNCALE ...ttt bbbt 2-45
2.1.30. NPSS_GELACCT.......eiitiieeiieicree ettt bbb 2-46
2.1.31. NPSS_GELACCENGAIMEceiiiiiiiieeiiriete bbb 2-47
2.1.32. NPSS_GELACL ...ttt bbb 2-48
2.1.33. NPSS_GEIBFSSIALSccviiiiiiiiiieiirieesi ettt bbb 2-50
2.1.34. hpss_GetCoNfIGUIAtiON.........ccoueiiiiiie e 2-51
2.1.35. NPSS_GEICW ...ttt bbbt bbb bbb 2-52
2.1.36. NPSS_GELLISTALLIS ...ttt bbb 2-53
2.1.37. NPSS_JUNCHIONCIEALEcuiiiiiieiiriesie e 2-54
2.1.38. hPSS_JUNCLIONDEIELE. ...t e 2-56
2.1.39. NPSS_LINK ..ttt bbb 2-57
2.1.40. hpsS_LoAdTRrEadSTateccoeiriiiriiiieee e 2-59
2.1.41. hpss_LoadDefaultTRreadState ..o 2-60
2,142, NPSS_LSEEK.....eeiiitiectiiett e 2-61
2.1 43, NPSS_LSTAL ...ttt bbb 2-63
2.1 44, NPSS_IMIGIALEeiniiiiictiiett bbbttt bbb 2-65
2.1.45. NPSS_IMKAIT ..ot 2-67
2.1.46. NPSS_OPEN ..ottt bbb 2-69
2.1.47. hPSS_OPENBILIIle.. ..o 2-72
2.1.48. NPSS_OPENAIN ...ttt bbb 2-74
2.0.49. NPSS_PUIGE .ottt bbb bbbkt 2-76
2.1.50. NPSS_PUFGELOCK.......iiiiiiiiieitete b 2-78
2.1.51. hpsS_PUrgeLoginCONTEXL ..o e 2-79

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

2.1.52. NPSS_REAU ...ttt 2-80
2.1.53. NPSS_REAUALLISeiiiiiciiec bbb bbb 2-82
2.1.54. NPSS_REAADIN ..ottt 2-84
2.1.55. NPSS_REAAIINKc.oiuiiiiiiiiece bbb 2-85
2.1.56. NPSS_REAALISTc.viviiiiiiciiiec et 2-87
2.1.57. NPSS_RENGIME ..ottt bbbttt bbb 2-89
2.1.58. hPpSS_REOPENBILIIIEcviuiiiiie e 2-91
2.1.59. NPSS_REWINAAIT ..ottt 2-93
2.1.60. NPSS_RIMAIT ...eciiitiiiie bbb bbb 2-94
2.1.81. NPSS_SEEACL ..ottt 2-95
2.0.82. NPSS_SEEACCT. ...ttt 2-97
2.1.63. NPSS_SELACCIBYNAIME ..ottt 2-98
2.1.64. NPSS_SEIBFSSTALSo.viviieiieeiirierte e 2-100
2.1.65. hpssS_SetCoNTIGUIALIONccooviiiiiiiiiiecee e 2-101
2.1.66. NPSS_SEICOSBYHINTS ..ottt 2-102
2.1.67. NPSS_SEFIIEOTTSEL ... 2-104
2.1.68. NPSS_SEILOGINCONTEXLcviuiiiiiiiiiieisiei et 2-106
2.1.69. hPSS_SITElIATONAME ..ot 2-107
2.1.70. NPSS_SItENAMETON ..o 2-108
2,170, NPSS_STAGE ...eveeeeiiiteiet ettt bbb 2-109
2.1.72. NPSS_StageCallBaCK..........ccoueiiiiiiiiiiie e 2-111
2,173, NPSS_STAL ...ttt 2-113
2.1 74, NPSS_STALES ... 2-115
2.1.75. NPSS_STALVTS ...ttt 2-116
2.1.76. NPSS_SYMIINK ...ttt 2-117
2.1.77. hpsS_ThreadCleanUpccoiiiiiriiiiiieee et 2-118
2.1.78. NPSS_TTUNCALE ...ttt bbbt bbbt 2-119
2.1.79. NPSS_UMASK ..ot 2-120
2.1.80. NPSS_UNTINK ..ottt 2-121
2.1.81. NPSS_UPAALEACL ...ttt 2-123
2.1.82. NPSS_UTIME ...t bbbt 2-125
2.1.83. NPSS_WVIITE ...ttt 2-127
2.1.84. NPSS_WWIITELIST ...ttt bbb 2-129
2.1.85. hpss_XLOAdTRIEAASTALE............coviiiiiiiiiei e 2-131
2.1.86. TrEE_TOT_IMEIM ..ottt ettt sttt bt et e et e eneeseaneene s 2-133
2.2. Non-DCE Client API SPeCifiC INTErfaCeS. ..ot 2-133
2.2.1. NPSS_PVREIIEVAIS ..ot 2-135
2.3. DAt DETINITIONS. ..ottt ettt sttt sttt e sttt en e neaneeneers 2-135
2.3.1. File Creation Hint Structure - hpss_c0OS_hiNtS_t.........ccocviiiiniiniiieiiee e 2-137
2.3.2. Class of Service Priorities - hpss_c0oS_priorities t........cccocvovinienienineieieeeeneens 2-139
2.3.3. Class of Service Metadata Structure - hpss_cos_ mMd_t.......ccccovvviiiiineieicieiecens 2-141
2.3.4. File Attribute Structure - hpss_fileattr t.........cccoooiiiiiiiii e 2-144
2.3.5. Extended File Attribute Structure - hpss_xfileattr t.........cccocovviiiiiiiiiices 2-145
2.3.6. Name Server Attribute Structure - NS_ALIIS T ..o 2-146
2.3.7. Name Server Fileset Attributes Structure — ns_FilesetAttrs t........cccocoveieieininenns 2-150
2.3.8. Name Server Object Handle Structure - ns_ObjHandle_t...........ccccoooieiiiiininenns 2-152
2.3.9. Name Server Directory Entry - NS_DIirENtry_t........ccccoeoiiiiiniiniieeee 2-154
2.3.10. Bitfile Volatile and Metadata Attributes - bf attrib t ..o, 2-155
2.3.11. Bitfile Volatile and Metadata Extended Attributes - bf xattrib t........................ 2-156
2.3.12. Bitfile Metadata Attributes - bf_attrib_ md_t..........ccocooiiiiinin 2-157
2.3.13. Bitfile Owner Record - bfS_ OWNEr _reC t......ccocoiiiiiiiiniiiiisene e 2-160
2.3.14. Bitfile Server Storage Class Attributes - bf _sc_attrib t.........ccccooviiiiiis 2-161
2.3.15. Bitfile Server Virtual Volume Attributes - bf vv_attrib_t........c.cooooiiiiiiiis 2-162
2.3.16. Storage Server Physical Volume Attributes - pv_list_element_t............ccccooee. 2-163
HPSS Programmer’s Reference, Vol. 1 December 2000 -5

Release 4.2, Revision 1

2.3.18. Bitfile Server Statistics - BfS_StatS ..o 2-165
2.3.19. AcCOUNt RECOId - ACCT_FEC T..iviiiiiiiiiiiiiiieee e 2-166
2.3.20. API Configuration Structure — api_Config_t........ccccviiiiininiinee e 2-167
2.3.21. Name Server ACL Conformant Array - nS_ACLCONfArray t......coeovevneninnen. 2-170
2.3.22. Name Server Access Control List Entry - nS_ACLENtry_t.......cccovvniiiiiiennne, 2-171
2.3.23. Global Fileset Entry Structure — hpss_global_fsent_t.........cccccooviiiiiniiniinennnen, 2-172
2.3.24. Name Server Fileset Attribute Bits — ns_FilesetAttrBitS_t..........cccoovcniiiiiieninen, 2-173
2.3.25. Name Server Object Attribute Bits — ns_FileSetAttrBitS_t.........ccccoovcenviirciiieninen. 2-174
2.3.26. Purge Lock Flag - purgelock_flag_t........ccccoiiriiniiiiiiee e 2-175
2.3.27. APl Name Specification — api_NamesSPeC_T.........coecrririinenniensessesee e 2-176
2.3.28. Bitfile Callback Address — bfs_callback_addr_t............ccooviiiiniiniiniinciee 2-177
2.3.29. HPSS Directory Entry — hpsS_direNt_t.......ccccooriiriiiiiieiesee e 2-178
2.3.30. HPSS Security User Credentials — hsec_UserCred_t.........cccooooevviiniiniincinencnen, 2-179
2.3.31. Security Password Entry — SECPWENT_T.......cccoiiiiiiiiiiresee e 2-180
Chapter 3. I/O Descriptor (I0D) and /O Reply (IOR)cooiiiiiiieeeeee e s 3-1
3.1, 170 DESCIIPLON PUIPOSE.cviiiiteiietiiiete ettt se ettt sttt sttt b et bbbt b bbb bbb nnns 3-1
3.2. 170 REPIY PUIPOSE ...ttt btttk bbbt bbbt nnes 3-1
3.3. 170 DeSCriptor COMPONENLTSc.oivetirieiirieierieiesieeste sttt sbe sttt se et sr bbbt sn e b e 3-1
3.4. 170 REPIY COMPONENTS.....oiuiiitiietiriete ettt etttk bbbt bbbt bt enns 3-2
3.5, Data DEFINITIONS. ...c.eiiiiiiiece ettt sttt sttt een e b ne e 3-3
3.5.1. 170 DesCriptor (I0OD) - IOD _T....ccoiiiiiiiiiieicieece et 3-3
3.5.2. Source/Sink Descriptor - SFCSINKAESC_T.......ccoiriiiiicirieiricreee e 3-6
3.5.3. Address STructure - addreSS Tccoooieiiieieieeceese e eneas 3-8
3.5.4. 170 RePlY (IOR) = IOR ..ottt s 3-17
3.5.5. Source/Sink Reply - SICSINKIEPIY T....cooiiiiiiieiece e 3-21
Chapter 4. Supplemental Data Transfer FUNCHONSoooiiiiiiiiiieiccccc e ree e e e e 4-1
AL AP FUNCTIONS ..eiitcieit ettt b bbbt bbbt nn et n et 4-1
4.1.1. IPI1-3 Data Transfer Library FUNCHONS..........cccooiiiiiiiiice e 4-2
O T T o = =Y o] 1= o USSP 4-2
4.1.1.2.1Pi3_datad _ClOSE.......ccceiuiriiieiieieieee s 4-3
4.1.1.3. 1Pi3_data3 FEaAd........cccereririerie et et 4-4
4.1.1.4.1Pi3_data3 WIILE ...ccvceiisceee et reens 4-6
4.1.1.5.ipi3_datad COMPIELEc.ooiiiiiiiee s 4-8
4.1.1.6. 1Pi3_datald CanCEl.......ccocoviiiieiee s 4-9
4.1.2. IP1-3 Data Transfer Library Data Definitions............ccccooriniiiniinienenene e 4-10
4.1.2.1. IPI-3 Interface Address Structure - IPI3_INTERFACE_STRUCT 4-10
4.1.3. Mover Socket (Parallel TCP/IP Data Transfer) FUNCLIONSccccccooeiineiineniniecnen, 4-11
4.1.3.1. mover_socket_send_bUffer ... 4-11
4.1.3.2. mover_socket_send_buffer_timeout...........c.ccocovviiniiiinni e, 4-13
4.1.3.3. mover_socket_send_buffer_timeout_Size..........ccccecviviviviieiencncsece, 4-15
4.1.3.4. mover_socket_get_ buffer ... 4-17
4.1.3.5. mover_socket_get_buffer_timeout.............ccocociriiiiniiiiinn e 4-19
4.1.3.6. Mover_SOCKet reCV_datacccceveiieecicese e 4-21
4.1.3.7. mover_socket_recv_data _timeoulccceveiieieiie i 4-23
4.1.3.8. mover_socket_send_requested_data..........c.ccocvieiiniiiiienenn e 4-25

2.3.17. Storage Server Physical Volume Attributes Conformant Array - pv_list_t.......... 2-164

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

4.1.3.9. mover_socket _send_requested_data_timeout...........cccccecevereneiieinincnennnn, 4-27

4.1.3.10. mover_socket_send_requested_data_timeout_Sizecccoceeeieieiinnnne. 4-29
4.1.3.11. mover_Waitfor_data..........ccoeiiiiiiie e 4-31
4.1.3.12. mover_waitfor_data timeoULccccciiiiiiiiiiie s 4-33
4.1.3.13. MOVer_WaitfOr_FEOUESTEScc.oiiieieeeeeee e 4-35
4.1.3.14. mover_waitfor_requests_timeoULccoevreriniinennese e 4-37
4.1.4. MOVEE PrOtOCOI APIS ...ttt st eneas 4-39
4.1.4.1. MVIProt_reCV_INIMSG c.oovieiiiiicieieee e e e re e 4-39
4.1.4.2. MVIProt_SeNd_INITMSO.....ccoiiiiieeeee e 4-40
4.1.4.3. MVIProt_reCV_iPaddr ... 4-41
4.1.4.4. mvrprot_Send _IPaddr.......ccccoiiiiiiiiiicicse s 4-42
4.1.4.5. Mvrprot_recV_ipi3addr.......ccoiiiiiiiie s 4-43
4.1.4.6. mvrprot_Send_ipi3addr ... 4-44
4.1.4.7. mvrprot_recV_Shmaddr........cccocciiiiiiiciiciesie e 4-45
4.1.4.8. mvrprot_send_Shmaddr ... 4-46
4.1.4.9. MVIProt_rECV_COMPIMISY «e.veverireiresiaiiesieiesieesessessesresressesressesseseessesseseeseneasesses 4-47
4.1.4.10. mVrprot_SeNd_COMPIMSG.....ccciieiuerieieieieiieeresesiesreste e sreseeseesaessessesaesessesenses 4-48
4.1.5. Mover Protocol Data STrUCLUIEScccviieiieiiecete e 4-49
4.1.5.1. Mover Protocol Initiator Message Structure - initiator_msg_t 4-49
4.1.5.2. Mover Protocol Completion Msg Structure - completion_msg_t 4-51
4.1.5.3. Mover Protocol TCP/IP Address Structure - initiator_ipaddr _t................ 4-52
4.1.5.4. Mover Protocol IP1-3 Address Structure - initiator_ipi3addr _t.................. 4-53
4.1.5.5. Mover Protocol Shm Address Structure - initiator_shmaddr t.................. 4-54
4.1.6. Parallel Data Transfer FUNCLIONS.........ccoco i 4-55
4.1.6.1. pdata_reCV_NAr ... e 4-55
4.1.6.2. pdata_recVv_hdr_timMeOULcooeiiiiiiii e 4-56
4.1.6.3. pdata_SeNd_NAFccooiiiiiii 4-57
4.1.6.4. pdata_send_hdr_tiMEOULccccoveiiiiiiiciese s 4-58
4.1.6.5. pdata_send_hdr_and_data..........cccoeoiiriiiiiiiiie e 4-59
4.1.6.6. pdata_send_hdr_and_data_timeout.............ccoceeriininnennieneneeeeeee 4-60
4.1.6.7. pdata_send_hdr_and_data_timeout_SiZec.ccocvireniiiiencieieseeeeene 4-62
4.1.7. Parallel Data Transfer Data Definitionsccccocovveiiiniennenceee e 4-64
4.1.7.1. Parallel Data Transfer Header - pdata_hdr_t..........ccccoooiiiiiiniiiiiieee, 4-64
4.1.8. Network Options FUNCLIONScocoiiiiiiiiiieieeeeie et 4-65
4.1.8.1. NELOPL_FINAENTIY ..ot 4-65
4.1.8.2. NELOPL_GEIWIILESIZE ..c.viviiieeceeer et 4-66
4.1.9. Network Options Data DefinitioNns........ccccovreviiiciciiciecec e 4-67
4.1.9.1. Network Options Entry - netopt_entry t........cccooiiiieniiiieneeeeeeeee 4-67
Chapter 5. Math LIDIaryoooceeiieieecee et r e e e e e e s e s s e et eee e e e« so—— 112211111 nnnnns 5-1
LT N o 1 0] (=T - Lot RSOSSN 5-1
ST - To [0 (G o OSSPSR 5-2
5.1.2. A0ABA_BIM ittt bt 5-3
LTS T 1 To [o o OSSOSO 5-4
ST 3 o] (o [72 o FO OSSPSR 5-5
515, CASEBAIM..... ettt bbb e e ettt e b ene s 5-6
B LB AIVBAIM ...ttt bbbt 5-7
HPSS Programmer’s Reference, Vol. 1 December 2000 -7

Release 4.2, Revision 1

LT A o [NV 22 37 o [T 5-8

518 AIV_CIBAM ..ot 5-9
5.1 AIV_2XCIBAIM ...ttt 5-10
5.1.10. BOZBAIM ..ttt 5-11
5L L0 BOBAIM . et 5-12
5112, GEBBAM ot 5-13
5113 GEBAIM ottt bbb Rt ettt en 5-14
5,114 NIGNB2IM ittt ettt 5-15
ST 1= 72 o o STV 5-16
S T0 0 L Co Y2 721 o HS OSSPSR 5-17
D117, TBAIM oottt b bbbttt en 5-18
S T0 00 = R 0 4T T [7Y o o USSR 5-19
o T0 0 e R 1 4T To 12T 7 o o OSSPSR 5-20
5.1.20. MUIBAM .ottt e ettt e st e s be s besbestesbesbesae st entesee e eneeneereanenneas 5-21
5.1.20. NEOZOAM ..ot 5-22
TR o o1 (<7 o o TSROSO 5-23
TR T o £ o ¢ SRR PR TSR 5-24
5.1.24. SNIBAIM ...ttt bbbttt en 5-25
TN T o1 07 o o SR SSRRSRPRR 5-26
5126, SUDBANM ...ttt ettt st s a et ettt et eneereeneene s 5-27
B.1.27. SUDBA_ 3 . bbb 5-28
5.2, Data DEFINITIONS.ui ittt sttt sttt neereere e 5-29
B.2.0. U_SIONEABA ...ttt bbb bbb 5-29
5.2.2. UNSIGNEAB2 ...ttt bbb bbb 5-29
Chapter 6. MPI-1O API FUNCLIONSuutiiiiiiiiaeiee ittt e e e e e e e e s st et e e e e e e e s emmmmmmmmme e e e e e 6-1
6.1. Application Programming INTErfaces.........ccciiiiiiiiiiiieee e 6-1
6.1.1. File ManiPUIBLIONcoiviiiiiiieiie e 6-3
B.1.1.1. MPI_FIlE _OPBN ..oveiecie sttt st st ne e ennaneas 6-5
6.1.1.2. MPI_FIlE_CIOSEciiieiiiiiiice e 6-8
6.1.1.3. MPI_File_delete ..o s 6-9
6.1.1.4. MPI_File_SBL SIZE ...eciiiii ittt nnane s 6-11
6.1.1.5. MPI_File_prealloCate.........ccocooi i 6-13
6.1.1.6. MPI_File_get_SIZE.......cciiiiriiiieeiree s 6-15
6.1.1.7. MPI_File_gEL grOUP ...cviiiiesiiiie ettt st nneneas 6-16
6.1.1.8. MPI_File_get_amOde.........ccccoeirriiiiniiiiieiie ettt 6-17
6.1.1.9. MPI_File_SEt_iNTOccoiiiieicic s 6-18
6.1.1.10. MPI_File_get iNfO......cccciiiiiiieieccee e 6-19
6.1.1.11. MPI_File_SEt_VIBW....c.coiiiiiiiiiiiicie e 6-20
6.1.1.12. MPI_File_get VIBWccoiiiiiiiiirieiieeee s 6-22
B.1.2. FHlE ACCESS. ...ttt ettt ettt b ettt b ettt bt b et et et e et et eneereeneeneas 6-24
6.1.2.1. MPI_File_read_al........cccciiiiiiiieiiiieie et s nn s 6-26
6.1.2.2. MPI_File_read_at_all..........cccooiiiiiiiiiiieee e 6-28
6.1.2.3. MPI_File_WIITE_Al.......ccooiiiiiirieiiiireec s 6-30
6.1.2.4. MPI_File_write_at allcccooeieiiceccc e 6-32
6.1.2.5. MPI_File_Iread_at......c.cccoiuiiiiiiiieinsee e 6-34
6.1.2.6. MPI_File_IWFITe_ Alcooiiiiiieiiiieee s 6-36
6.1.2.7. MPI_FIlE_FEadc.cceci ittt s sttt nnane s 6-38
6.1.2.8. MPI_File_read_all.........ccccoiiiiiiiieee e 6-40

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

B.1.2.9. IMIPL_FTIE WL e oveveeeeeereeeeee e seeeeeeseeeesseeessesseeeseseeessseesssssseees e ssesseesesseeeees 6-42

6.1.2.10. MPI_File WIIte_allc.cciiiiiiiicec e e 6-44
6.1.2.11. MPI_FIlE_Ir A ...ocveiiiiiiiie e 6-46
6.1.2.12. MPI_FIlE_IWWIITE....cviiciiieii et 6-48
6.1.2.13. IMPI_FIIE_SEEK ..o.viviiciiiieiiiieii ettt 6-50
6.1.2.14. MPI_File_get_POSItiONcoeiiiiiriiiriiiicseste s 6-52
6.1.2.15. MPI_File_get byte OffSet ..o 6-53
6.1.2.16. MPI_File_read Sharedccccooiiiiiieii i 6-54
6.1.2.17. MPI_File_write_Shared............cccooviiiiiiiii s 6-56
6.1.2.18. MPI_File_iread Shared..........cccocoieieieiiciiiieccc e 6-58
6.1.2.19. MPI_File_iwrite_Shared..........ccccocoiiiiiiiiiiciccceeee e 6-60
6.1.2.20. MPI_File_read_orderedcccoviiiiiiiniieseeesee s 6-62
6.1.2.21. MPI_File_Write_ordered.........ccocveiiiieieiieieiicese e eneas 6-64
6.1.2.22. MPI_File_seek Sharedcccooiiiiiiiiiiicicceeee e 6-66
6.1.2.23. MPI_File_get_position_shared ... 6-68
6.1.2.24. MPI_File_read_at all begin........cccoooiiiiiiiiiiiccce e 6-69
6.1.2.25. MPI_File_read_at all end.........ccccccooiiiiiiiciiciccceee e 6-71
6.1.2.26. MPI_File_write_at_all_begin ... 6-72
6.1.2.27. MPI_File_write_at_all_ end...........cccocoiviiiiiiiic e 6-74
6.1.2.28. MPI_File_read_all_begin ... 6-76
6.1.2.29. MPI_File_read_all_endccccoiiiiiiiiiiiiiisee s 6-78
6.1.2.30. MPI_File_write_all_ begin.........ccccccoiiiiieiiiecccce e 6-79
6.1.2.31. MPI_File_write_all end.........cccooiiiiiiiciccceee e 6-81
6.1.2.32. MPI_File_read_ordered_Degin ...t 6-83
6.1.2.33. MPI_File_read_ordered endccccovveiiiiiiiiininie e 6-85
6.1.2.34. MPI_File_write_ordered_begin ..o 6-86
6.1.2.35. MPI_File_write_ordered_end..........cccocooiiriiniiniinseeesee s 6-88
6.1.3. File INteroperability ... 6-90
6.1.3.1. MPI_File_get type eXteNt......ccccciieiiiieciciee st eneas 6-92
6.1.3.2. MPI_ReQiSter_datarecccooeieiieieieieeeeiees et eneas 6-93
6.1.4. File CONSISIENCYoiuiiiiitiiieite ettt bbb bbbt se b eae s 6-95
6.1.4.1. MPI_File_Set_atOmIiCity.......ccccooeiiriiiriiiiiriseise s 6-96
6.1.4.2. MPI_File_get atOmMIiCItycccccieieiiiiiiieiece e ene e 6-97
6.1.4.3. MPI_FIIE _SYNC ..ottt st e ene s 6-98
LT =y o] gl o =V T 1 1T T RS 6-99
6.1.5.1. MPI_File_create_errhandler...........cccoviiiiniiniiiiineeese s 6-102
6.1.5.2. MPI_File_set_errhandler ... 6-103
6.1.5.3. MPI_File_get_errhandler...........coooiiiiiie e 6-104
6.1.5.4. MPI_File_call_errhandler ... 6-105
B.1.6. FIlE HINTS...ocuiiiiicicee ettt b e bbb 6-106
6.1.6.1. MPI_INTO_Create......cccvciiiiiii e 6-108
6.1.6.2. MPI_INTO_SBL ..ovviuiiiiici et 6-109
6.1.6.3. MPI_INTO_AEIELE ..o s 6-110
6.1.6.4. MPI_INTO_gEL....iiiiiiiciiee et 6-111
6.1.6.5. MPI_INfo_get_ ValUelen.........ccco oo 6-112
6.1.6.6. MPI_INTO_gEL NKEYS.....ciiiriiirieiieiiriere et 6-113
6.1.6.7. MPI_INTO_get NThKEY.....cocceiiii e 6-114
HPSS Programmer’s Reference, Vol. 1 December 2000 -9

Release 4.2, Revision 1

B.1.6.8. IMPL_INFO_UPD w.vvoeeeeeeeveceoeereeeseeeeeeseeeeeeseseeesseeessesseeeseseesesseesssssseeesesesssesesssenee 6-115

6.1.6.9. MPI_INTO_FrBE....o it e 6-116
6.2. C++ LaNgUAQE BINAINGS....c..oiiiieiiiiiiiiieese st bbb b b e se et e e ebe e 6-117
6.3. Fortran Language BiNAINGScooeiiiiiiiie ettt 6-125
6.4, DALA DEFINITIONS. .. .ccuiitiieiitiee et b e bbb bt et n et ne b ers 6-131
6.4.1. MPI-10 Standard Data Definitionsccccooiiiiiiniiiiicie e 6-131
B.4.1.1. MPI_OFFSEL....uiiiiicieice bbb 6-132
6.5. TrOUDIESNOOTINGoviviiiiii bbb 6-133
6.5.1. COMPIIALION ISSUESc.eviiitiieiiiecte bbb bbb 6-133
6.5.2. LOAAZLINK ISSUBS......utiuiitiiieiiisiisiesiesieieieseetesee s sesteste e stestestesaesaestesaessenteeeeenseneesesneanens 6-134
5.5.3. RUN-TIME BITOIS ..ottt sttt e et et e eneesesneenens 6-134
6.5.4. Tread-Safety ISSUBSccciiiiiieeiriiirt et 6-134
6.5.5. PEITOrMANCE ISSUBSiitiiieieiriiierie ettt sttt sttt e eneeseenennens 6-135
B.5.6. CACNING ISSUBS.......euiitiiitiieiirt ettt bbbt bbbt bbb 6-136
Chapter 7. Site INTEITACESeeiieiiiiii ettt e e e e e ettt e et e e e s bt e e e e e e e es 139
7.1, GALEKEEPING ...eeieetiteiitee bbb bbbt bbb 139
0 N o | T 1 S O o 1= TSRS SSRRPRR 140
O o | T | G O =T L USROS PSR 142
7.1.3. gk_site_CreateCOMPIELE.coouiiiiiie e 146
714, gK_SItE _CreateSTalSciieieereeie ettt sttt e ene s 147
7.1.5. gK_Site_GetMONITOITYPEScuiiiiiiiiiteistee ettt 149
716, GKUSITE INIT .ottt ne b neene s 151
T 0.7, GK_SITE _OPBN ..ttt 153
7.1.8. gK_SITE_OPENSTALSeuviviiiiiiiiirieiisiert e bbbttt 155
7.1.9. gK_SItE PASSTRINU ...cuiiiiiiii ittt ene s 156
7.1.10. gk_sSite_ REAASITEPOIICYvciieiiiiiieie e 158
7.1.11. gK_SIte SNULAOWNoviiiiiiiiie ettt et ene s 160
T.0.02. gK_SITE STAQE ...ttt bbb bbb 161
7.1.13. gk_Site_StageCOMPIELE........ccoiiiiiiiee e 163
7.1.14. gK_SItE_STAJESTALSecvieiiiiciiiteirie et 164
7.2. Account Validation Site INTErTACEccooii i 165
7.2.1. av_Site_ACCHIAXTONGIMEoouiiiiiiiieee e eneas 166
7.2.2. av_Site_ACCINAMETOIAX ..oviieiiiieieeeeee e 169
7.2.3.@V_SIte_INITIANIZEocve e et 172
7.2.4.aV _Site SNULAOWNc.ooiiii et e e et 173
7.2.5. aVv_Site ValidateACCOUNL..........ccoeiieiee ettt eae s 174
7.2.6. av_site_ ValidateChaCCL...........ccccoi i 177
7.2.7. av_site_ ValidateCROWN ... 180
7.2.8. aV_Site ValidateCrEateceeci ettt ettt eae e 183
Chapter 8. Access Control List API FUNCHONSciiiiiiiiiiiiiiiiiee e e e e e e e e s smneeeeeeee e 187
8.1, AP INTEITACES .. ettt ettt b bt bbbt bt sb e b e b bt et e et bt b e re e 187
8.1.1. haCl_CONVEITACLTOHAC KLiiie ettt e 187
8.1.2. haCl_CONVEITHACLTOACKL ..ottt sne e 188
8.1.3. haCl_CoNVErtHACLTOSIIINGcoviiviiiieieieiieeee ettt 189
8.1.4. hacl_ConVertHACLPEIrMSTOPEIMS.......coiiieieitieie ettt 190
8.1.5. hacl_CoNnVertHACLTYPETOTYPE ..ottt 191
8.1.6. hacl_ConvertPermMsTOHACLPEIMS. ... e 192
8.1.7. hacl_ConvertStringSTOHACKL. ...t 193

-10

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

8.1.8. hacl_ConVertTYPETOHACLTYPE ..ottt 195

8.1.9. NACI_DEIBTEHACKL ..ot 196
8.1.10. NACI_GEIHACL ...ttt ettt 198
8.1.11. NACI_SETHACKL ...ttt 199
8.1.12. NACI_SOTTHACL ...ttt bbbttt 200
8.1.13. haCl_UPAALEHACKL ..ottt 201
8.2. Data DEFINMITIONS. ... ettt sttt sttt et et een e reene e 203
8.2.1. HACL-style Access Control List - hacl_acl_t.........c.cccoeiiiiiiniieeeee 203
8.2.2. HACL-style Access Control List Entry - hacl_acl_entry t.......c.ccooiiniiniininnn. 204
Appendix A - Programming EXAMPIES........oceeuiiiiiiiiiieeee et —— A-1
Appendix B - Makefile EXaMPIE.........coo et e B-1
Y o] 0= o [0t @ N\ o] £ RPN C-1
APPENTIX D = ACTONYMIS ...ttt e e e e e ettt e e e e e e e o e e bbb b ettt et e e ae e e s aa e s e bbb beeeeeeeaeeeasaannbbnaeeeeaaaaassbsseeeeeaaaaans D-1
APPENIX E = REFEIBINCES ...ttt e e ettt e e e e e e e e e s e emmemnnm s 11 nb e e s 3
Appendix F - MPI-10 Programming EXAmMPIESuuuiiiiiiiieeeiiiiiieiie e e e e e e e e e nneneeeees 5
HPSS Programmer’s Reference, Vol. 1 December 2000 -11

Release 4.2, Revision 1

-12

December 2000

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Preface

This High Performance Storage System (HPSS) Programmer*s Reference Guide, Volume 1, Release 4.2, documents
client function calls which are provided by HPSS. It is designed for application programmers.

The document provides the programming reference for HPSS Release 4.2. In particular, the HPSS Client
Application Programming Interfaces (APIs), 64-bit arithmetic library calls, Message Passing Interface -
Input / Output (MPI-10) interfaces, Site Interfaces, and ACL Interfaces are described. The 64-bit arith-
metic library APIs are included since some Client APIs require 64-bit unsigned integer fields.

The objective of this document is to meet the following general goals:

< Define any known limitations of the APIs.

= Define the application programming interfaces (APIs) provided for use by other subsystems or clients.
< Define the data definitions referenced by the APls.

Refer to the HPSS User's Guide for a description of the following command line interfaces: standard FTP,
parallel FTP, NFS, IBM SP Parallel 170 File System Import / Export, DFS, and user utilities.

Refer to the HPSS Error Messages Manual for a list of all HPSS error and advisory messages which are out-
put by the HPSS software. For each message, the following information is provided: message identifier
and text, source file name(s) which generate the message, problem description, system action, and admin-
istrator action.

Refer to the HPSS Installation Guide and HPSS Management Guide for descriptions of the interfaces pro-
vided to HPSS administrators.

Refer to the HPSS Programmer"s Reference, Volume 2 for a description of application programming interfaces
to the core HPSS servers. While it is envisioned that most users will access HPSS through the Client API,
standard File Transfer Protocol (FTP), parallel FTP (PFTP), Network File System Version 2 (NFS V2), or
DFS, well-defined programming interfaces are provided for each HPSS server. It should be noted that pro-
gramming to the individual server level is a more complex programming model which requires a greater
understanding of the HPSS servers. Volume 2 is appropriate for application / system's programmers with
special needs (e.g. replacing the System's Management interface, adding a new Physical Volume Reposi-
tory, etc.).

The HPSS Programmer's Reference Guide, Volume 1 is structured as follows;
Chapter 1: Overview This chapter provides an overview of

each type of programmer interface,
contraints, and required libraries.

Chapter 2: Client API This chapter defines the Client API speci-
fications and associated data definitions.
Chapter 3: 1/0 Descriptor (I0OD) and 1/0 Reply (IOR) This chapter describes the 1/0 Descriptor
(I0D) and 1I/0 Reply (IOR) Structures.
Chapter 4: Supplemental Data Transfer Functions This chapter describes a set of support
HPSS Programmer’s Reference, Vol. 1 December 2000 -9

Release 4.2, Revision 1

Chapter 5: Math Library

Chapter 6: MPI-10

Chapter 7: Site Interfaces

Chapter 8: ACL API

Appendix A: Programming Examples

Appendix B: Makefile Examples

Appendix C: Notes

Appendix D: Acroynms

Appendix E: References

Appendix F: MPI-10 Programming Examples

Typographic and Keying Conventions

This document uses the following typographic conventions:

APIs to facilitate data transfers. Applica-
tions using hpss_ReadList and
hpss_WriteList are potential users of
these functions.

This chapter defines the 64-bit arithmetic
library API specifications and associated
data definitions.

This chapter defines the MPI-10 specifi-
cations and associated data definitions.

This chapter defines the Account Valida-
tion and Gatekeeper Site Interface
specifications and associated data
definitions.

This chapter defines the specifications
and associated data definitions for the
Acces Control List (ACL) API.

This appendix provides some example
code for reading and writing HPSS files.

This appendix provides example Make-
files for building client applications on
different platforms.

This appendix provides notes on 10D
usage.

This appendix provides a list of acro-
nyms used in this document.

This appendix lists documents cited in
the text as well as other reference
materials.

This appendix provides example code
for using the HPSS MPI-10 programming
interface.

Bold Bold words or characters represent system elements that you must use literally,
such as functions, commands or keywords.

Italic Italic words or characters represent variable values to be supplied.

[1 Brackets enclose optional items in syntax and format descriptions.

{} Braces enclose a list of items to select in syntax and format descriptions.

-10 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 1. Overview

Chapter 1. Qverview

The High Performance Storage System (HPSS) provides scalable parallel storage systems for highly paral-
lel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting
the high end of storage system and data management requirements, HPSS is scalable and designed for
large storage capacities, and to use network-connected storage devices to transfer data at rates up to mul-
tiple gigabytes per second. Listed below are the programming interfaces for accessing data from HPSS.

1.1. Client API

1.1.1. Purpose

The purpose of the Client API is to provide an interface which mirrors the POSIX.1 specification where
possible to provide ease of use to the POSIX application programmer. In addition, extensions to allow the
programmer to take advantage of the specific features provided by HPSS are provided (e.g., storage/
access hints passed on file creation, parallel data transfers, migration, and purge).

1.1.2. Components

The Client API consists of these major parts:

= File Open/Creation and Close Operations
= File Data Access Operations

= Fileset/Junction Creation and Deletion Operations
= File Attribute Operations

= File Name Operations

= Directory Creation and Deletion Operations
= Directory Access Operations

= Working Directory Operations

= Client API Control Operations

= DCE Login Context Routines

= Bitfile Server Statistic Operations

HPSS Programmer’s Reference, Vol. 1 December 2000 1-1
Release 4.2, Revision 1

Chapter 1. Overview

File Open/Creation and Close Operations provide functions to create a file, open existing files and close
previously opened files. The functions within this section are hpss_Open, hpss_Close, hpss_Create,
hpss_OpenBitfile and hpss_ReopenBitfile.

File Data Access Operations provide functions to read from and write data to HPSS files. The functions
within this section include hpss_Lseek, hpss_Read, hpss_ReadList, hpss_SetFileOffset, hpss_Write, and
hpss_WriteList.

Fileset/Junciton Creation and Deletion Operation provide functions to create and delete filesets and junc-
tions. Functions within this sections include hpss_FilesetCreate, hpss_FilesetDeletes,
hpss_FilesetGetAttributes, hpss_FilesetSetAttributes, hpss_FilesetListAll, hpss_JunctionCreate and
hpss_JunctionDelete.

File Attribute Operations include functions to query and alter a file’s attribute values (both via POSIX con-
sistent interfaces and extended HPSS interfaces), and determine a client’s accessibility to a file or directory.
Functions within this section are hpss_Access, hpss_AcctCodeToName, hpss_AcctNameToCode,
hpss_Chacct, hpss_ChacctByName, hpss_Chmod, hpss_Chown, hpss_ConvertildsToNames,
hpss_ConvertNamesTolds, hpss_DeleteACL, hpss_Fclear, hpss_FileGetAttributes,
hpss_FileGetXAttributes, hpss_FileSetAttributes, hpss_Fstat, hpss_Ftruncate, hpss_GetAcct,
hpss_GetAcctName, hpss_GetACL, hpss_GetListAttrs, hpss_Lstat, hpss_Migrate, hpss_Purge,
hpss_SetACL, hpss_SetAcct, hpss_SetAcctByName, hpss_SiteldToName, hpss_NameTold
hpss_Stage, hpss_Stat, hpss_Statfs, hpss_Statvfs, hpss_Truncate, hpss_Umask, hpss_UpdateACL,
hpss_Utime, and hpss_PurgeLock.

File Name Operations provide functions to rename files and directories and remove a name associated
with a file. Functions within this section include hpss_Link, hpss_Readlink, hpss_Rename,
hpss_Symlink, and hpss_Unlink.

Directory Creation and Deletion Operations provide functions to make and remove directories. Functions
within this section include hpss_Mkdir and hpss_Rmdir.

Directory Access Operations provide functions to read the directory entries from a directory. Functions
within this section include hpss_Closedir, hpss_Opendir, hpss_ReadAttrs, hpss_Readdir, and
hpss_Rewinddir.

Working Directory Operations provide functions to query and alter a thread’s current working directory.
Functions within this section include hpss_Chdir, hpss_Chroot, and hpss_Getcwd.

Client API Control Operations provide functions to update and clean up a thread's Client API state infor-
mation. Functions within this section include hpss_GetConfiguration, hpss_LoadThreadState,
hpss_LoadDefaultThreadState, hpss_ThreadCleanUp, and hpss_SetConfiguration. Also included is an
important internal routine: hpss_ClientAPlInit. This API will not be used by most applications.

DCE Login Context Operations provide convenience functions to establish an application program's DCE
login context, and subsequently purge the login context. An application program which is calling the Cli-
ent API library must run on behalf of a DCE principal. Either the user can login to a DCE account prior to
submitting the application program, or the hpss_SetLoginContext function may be called from the appli-
cation. The name of the DCE principal and associated keytab file name are supplied to the function. Prior
to exiting the application, the user must call hpss_PurgelLoginContext to delete the security context and
terminate the thread which maintains the context.

Bitfile Server statistics operations provide the ability to get and reset the stage, migration, purge, and
delete counts for the Bitfile Server. The functions that provide these capabilities are hpss_GetBFSStats
and hpss_SetBFSStats.

1-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

1.1.3. Constraints

The following constraints are being imposed by the Client API:
= The validity of open files and directories at the time of fork is undefined in the child process.
= The validity of open files and directories is lost across calls to any of the family of exec calls.

= The designed client API works only with applications that make use of both the POSIX Name Server
and the Bitfile Server. In particular, this API is not designed to meet the needs of clients that will per-
form the Name Server functionality internally and/or will bypass the Bitfile Server when performing
storage operations.

1.1.4. Libraries

Two Client API libraries are provided. Applications issuing HPSS Client API calls must link one of the
following libraries:

libhpss.a HPSS client library

libhpss_ipi.a Same as libhpss.a, but also provides HPSS IPI-3 support. The HPSS IPI-3
support library libhpssipi3.a must also be linked. Inaddition, itis required
to include the IPI-3 library by specifying -lipi3 when compiling / linking
the application. Also, for IPI-3 transfers, the HPSS_ TRANSFER_TYPE
environment variable must be set to IPI3. Refer to section 6.6.

In addition, the following libraries must be linked:
libEncina.a

libdce.a

1.1.5. Environment Variables

A description of environment variables used by the Client API is provided in this section. In most cases,
explicit setting of these environment variables is only required if HPSS was installed with non-default val-
ues. Contact your administrator to determine the values being used or refer to the <hpss_directory>/con-
fig/hpss_env file (e.g. Zopt/hpss/config/hpss_env) for the environment variable settings. The following
environment variables can be used to control the Client API’s working environment:

The HPSS_LS NAME defines the CDS name of the Location Server RPC group entry for the HPSS system
that the Client API will attempt to contact. The defaultis /.:/hpss/Is/group.

The HPSS_MAX_CONN identifies the integer value that will be used as the maximum number of allowed
connections. The default is zero, which is equal to the default supported by the HPSS connection manage-
ment software - currently 150.

HPSS Programmer’s Reference, Vol. 1 December 2000 1-3
Release 4.2, Revision 1

Chapter 1. Overview

The HPSS_KTAB_PATH defines the name of the file containing the DCE security keys necessary for suc-
cessfully initializing the Client API. The default is /krb5/hpssclient.keytab.

The HPSS_ HOSTNAME environment variable is used to specify the host name to be used for TCP/IP
ports created by the Client API. The default value is the default host name of the machine on which the
Client API is running. This value can have a significant impact on data transfer performance for data
transfers that are handled by the Client API (i.e., those that use the hpss_Read and hpss_Write interfaces).

The HPSS_TCP_WRITESIZE environment variable is used to specify the amount of data to be written
with each individual request to write data to a network connection during a data transfer. For some net-
works, writing less than the entire size of the client buffer has resulted in improved throughput. This envi-
ronment variable may not affect the actual value used, based on the contents of the HPSS network options
file.

The HPSS_TRANSFER_TYPE environment variable is used to specify the data transport mechanism to
be used for data transfers handled by the Client API. Valid values are either "TCP" for TCP/IP transfers or
"IP13" for IP1-3 transfers over HIPPI. The default value is "TCP". Note that the Client API library (lib-
hpss.a or libhpss_ipi.a) must be linked by the application for the transfer to be performed via IPI-3 over
HIPPL.

The HPSS_PRINCIPAL environment variable is used to specify the DCE principal to be used when initial-
izing the HPSS security services. The default value is hpss_client_api. This variable is primarily intended
for use by HPSS servers that utilize the Client API.

The HPSS_SERVER_NAME environment variable is used to specify the server name to be used when ini-
tializing the HPSS security services. The default value is "/.:/hpss/client". This variable is primarily
intended for use by HPSS servers that utilize the Client API.

The Client API, if compiled with debugging enabled, uses two environment variables to control printing
debug information. HPSS_DEBUG, if set to a non-zero value, will enable debug messages. By default,
these messages will go to the standard output stream. If HPSS_DEBUGPATH is set, however, these mes-
sages will be directed to the file indicated by this environment variable. Two special cases for the debug
path exist: "stdout" and "stderr", which will use the standard output or standard error 1/0 streams, respec-
tively.

The HPSS_DESC_NAME enviornment variable is used to place a descriptive name in any HPSS mes-
sages logged by the Client API Library. The default value is “Client Application “. This variable is only
used when logging is enabled in the library.

The HPSS_BUSY_RETRIES environment variable is used to control the number of retries to be performed
when a request fails because the Bitfile Server does not currently have an available thread to handle that
request. A value of zero indicates that no retries are to be performed. A value of negative one indicates
that retries should be attempted until either the request succeeds or fails for another reason. The default
value is 3.

The HPSS_BUSY_DELAY environment variable is used to control the number of seconds to delay
between retry attempts. The default value is 15.

The HPSS_RETRY_STAGE_INP environment variable is used to control whether retries are attempted on
opens of files in a Class of Service that is configured for background staging on open. A non-zero value
indicates that opens which would return -EINPROGRESS to indicate that the file is being staged will be
retried (using the same control mechanisms described in the previous paragraph). A value of zero indi-
cates that the -EINPROGRESS return code will be returned to the client. The default value is zero.

1-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

The HPSS_REUSE_CONNECTIONS environment variable is used to control whether TCP/IP connec-

tions are to be left open as long as a file is opened or are to be closed after each read or write request. A

non-zero value will cause connections to remain open, while a value of zero will cause connections to be
closed. The default value is zero.

The HPSS_USE_PORT_RANGE environment variable is used to control whether the HPSS Mover(s)
should use the configured port range when making TCP/IP connections for read and write requests. A
non-zero value will cause the Mover(s) to use the port range. A value of zero will cause the Mover(s) to
allow the operating system to select the port number.

The HPSS_NUMRETRIES environment variable is used to control the number of retries to attempt when
an operation fails. Currently this class of operation includes library initialization and communications fail-
ures. A value of zero indicates that no retries are to be performed, and value of negative one indicates that
the operation will be retried until successful. The default value is 4.

The HPSS_TOTAL_DELAY environment variable is used to control the number of total seconds to con-
tinue retrying requests. A value of zero indicates that no there is no time limit. The default value is 0.

The HPSS_REGISTRY_SITE_NAME environment variable is used to specify the name of the security
registry used when inserting security information into connection binding handles. This is only needed
when the client must support DFS in a cross-cell environment. The default registry is “/.../dce.clear-
lake.ibm.com”

The HPSS_DMAP_WRITE_UPDATES environment variable is used control the frequency of cache inval-
idates that are issued to the DMAPI file system while writing to a file that is mirror in HPSS. The default
value is 20.

The HPSS_GKTOTAL_DELAY is used to control the total number of seconds to continue retrying a Gate-
keeper request before the request times out. A value of zero indicates that there is no time limit. The
default value is 600.

The HPSS_LIMITED_RETRIES is used to control the number of retry attempts before a limited retry
error operation fails. The default value is 1

The HPSS_DISABLE_CROSS_CELL is used to control cross-cell traversal. When cross cell traversal is
disabled, a client will not be allowed to access directories which are located in another DCE cell. The
default value is 0.

The HPSS_DISABLE_JUNCTIONS is used to control junction traversal. When junction traversal is dis-

abled, a client will not be allowed to access directories which require traversal to the directory via a DFS or
HPSS junction. The default value is 0.

1.2. Supplemental Data fansfer Functions

1.2.1. Purpose

The purpose of the supplemental data transfer APIs is to provide a convenience library of functions for
those clients supplying their own data transfer logic. For example, applications calling the hpss_ReadL.ist
or hpss_WiriteL.ist functions may want to use these APIs to handle their end of the data transfer.

HPSS Programmer’s Reference, Vol. 1 December 2000 1-5
Release 4.2, Revision 1

Chapter 1. Overview

1.2.2. Components

The supplement data transfer APIs consist of these major parts:
1.2.2.1. IPI-3 Data Transfer

The purpose of the IPI-3 data transfer library is to provide an interface to send and receive data when
using IP1-3 as the data transfer protocol.

1.2.2.2. Mover Socket (Parallel TCP/IP Data Transfer)

The purpose of the Mover Socket library is to provide interfaces to send and receive parts of an HPSS par-
allel data transfer, when using TCP/IP as the data transport mechanism. Interfaces are provided for both
the transfer responder (typically an HPSS Mover, which controls the order of the transfer) and the transfer
initiator (typically an HPSS client or Mover, which responds to requests made by the responder).

1.2.2.3. Mover Protocol

The purpose of the Mover Protocol library is to provide an interface that can be used to send and receive
the various messages used by the HPSS Mover-to-Mover Protocol. The Mover Protocol allows a light-
weight protocol that can be used for flow control during large data transfers, as well as supporting negoti-
ated data transfer mechanisms and sizes of the current piece of the transfer.

1.2.2.4. Parallel Data Transfer

The purpose of the Parallel Data Transfer library is to provide an interface to send and receive the headers
used by HPSS to delineate parts of a parallel data transfer when using TCP/IP as the data transport mech-
anism. The use of this library provides the transfer of data across many parallel data connections using
multiple sockets and allows the data to be sent in the most efficient order. In other words, this library not
only allows the data to be sent over parallel socket connections, but also allows the data to be sent in any
order.

1.2.25. Network Options
The purpose of the Network Options library is to provide an interface to query the information contained
in the HPSS network options configuration file for the local machine. This file contains information about

network options that may be configured differently for specific network and/or nodes with which the
local machine is communicating.

1.2.3. Constraints

The following constraints are being imposed by the supplemental APIs:
« Only 2 gigabytes of data may be transferred by any one library call.

= The client must supply a unique transfer identifier in the parallel data transfer calls to identify the
data.

1-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

1.2.4. Libraries

The HPSS client libraries listed under 3.1.3 must be linked.

1.3. Non-DCE Client API

1.3.1. Purpose

The purpose of the Non-DCE Client APl (NDAPI) is to provide an interface which mirrors the standard
HPSS Client API specification to provide HPSS access to applications which run in environments lacking
DCE and/or Encina.

1.3.2. Components

With the exception of ACL APIs, the NDAPI provides the same procedure calls as the standard Client API
(See section 1.1.2.).

In addition, the hpss_PVRetrievals function is provided to enable non-DCE clients to retrieve usage
information about particular physical volumes.

1.3.3. Constraints

In addition to the constraints imposed by the standard Client API (See section 1.1.3.), the following con-
straint is being imposed by the Non-DCE Client API:

= Client authentication is not yet supported. A client’s HPSS/DCE identity is based on their Unix iden-
tity. Therefore, Unix and DCE UIDs should be consistent for client utilizing the Non-DCE Client API.

= Transactional support is not yet provided. An API returning with an EPIPE indicates a communica-
tions problem with the Non-DCE Client Gateway, between the time that the command was issued and
the time the reply was received. In cases where this error is returned from a API that modify the state
of an HPSS object, the failure or success of the operation can not be assumed and the state of the object
should be queried before continuing.

1.3.4. Libraries

The Non-DCE Client API library has the same name as the standard non-IPI version Client API (See sec-
tion 1.1.4)).

libhpss.a HPSS client library

HPSS Programmer’s Reference, Vol. 1 December 2000 1-7
Release 4.2, Revision 1

Chapter 1. Overview

However, when using the Non-DCE Client API, it is not necessary to link either libEncina.a or libdce.a.

1.3.5. Environment Variables

The Non-DCE Client API supports most of the environment variables supported by the standard Client
API (See section 1.1.5.) However, the following environment variables are not supported:

= HPSS_LS_NAME

= HPSS_TRANSFER_TYPE

= HPSS_SERVER_NAME

= HPSS_DMAP_WRITE_UPDATES

In addition to the standard Client API environment variables, the Non-DCE Client API supports the fol-
lowing environment variables:

The HPSS_NDCG_NAME environment variable is used to specify the server name to be used when ini-
tializing the HPSS security services. The default value is /.:/hpss/client.

The HPSS_NDCG_TCP_PORT environment variable defines the default port location for the Non-DCE
Client Gateway with which the Non-DCE Client APl will communicate. The value can be overridden by
appropriate entries in the HPSS_NDCG_SERVERS environment variable. The default value is 9590.

The HPSS_NDCG_SERVERS environment variable defines the name of the server on which the Non-
DCE Client Gateway resides. Multiple servers may be separated by a colon (:). Also, it is possible to explic-
itly set the TCP port on a per server basis by following the server name with a forward slash (/) and a port
number. The Non-Client API will randomly pick one of the specified entries to use as the gateways
address. For example, a string “hpss/8002:pluto” would define two Non-DCE Client Gateways. One
(hpss) uses an explicit port number, and the other (pluto) uses the value from the
HPSS_NDCG_TCP_PORT.

The HPSS LOGGING_PORT environment variable defines the port number of the Log Client to which
log messages will be sent. The default value is 8001.

The HPSS LOGGING_TYPE environment variable defines the types of messages to log. It consists of a
list of log type strings, separated by colons (). For example “CS_ALARM:CS_STATUS” would enable the
logging of alarm and status messages. Valid log types are: CS_ALARM, CS_EVENT, CS_REQUEST,
CS_SECURITY, CS_ACCOUNTING, CS_DEBUG, CS_TRACE, CS_STATUS. The default value is
“CS_ALARM:CS_EVENT:CS_REQUEST:CS_SECURITY™.

1.4. 64-bit Arithmetic Library

1.4.1. Purpose

Some HPSS Client APIs require 64-bit fields. The operating system and C compiler on many workstation

1-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

platforms may not support 64-bit integer operations. As a result, in order to support large integer fields, a
set of math libraries have been supplied until 64-bit support is available on all pertinent vendor platforms.

1.4.2. Components

The Math Libraries consist of the following macros:

add64m
add64 3m
and64m
bld64m
cast64m
div6dm
div2x64m

div_cl6dm

div_2xcl64m

eqz64m
eq64m
high32m
le64m
low32m
1t64m
ge64m
gté4m
mod64m
mod2x64m
mul64m

neqz64m

Add two 64-bit unsigned integers

Add two 64-bit unsigned integers and store the result in a separate parameter.
Perform a bitwise AND of two 64-bit unsigned integers

Build a 64-bit unsigned integer from two 32-bit unsigned integers

Cast a 32-bit unsigned integer into a 64-bit unsigned integer

Divide a 64-bit unsigned integer by a 32-bit unsigned integer

Divide a 64-bit unsigned integer by a 64-bit unsigned integer

Divide a 64-bit unsigned integer by a 32-bit unsigned integer and return the ceil-
ing

Divide a 64-bit unsigned integer by a 64-bit unsigned integer and return the ceil-
ing

Determine if a 64-bit unsigned integer is zero

Compare two 64-bit unsigned integers for equality

Extract the high order 32-bits of a 64-bit unsigned integer

Perform less than or equal to check between two 64-bit unsigned integers
Extract the low order 32-bits of a 64-bit unsigned integer

Perform less than check between two 64-bit unsigned integers

Perform greater than or equal to check between two 64-bit unsigned integers
Perform greater than check between two unsigned 64-bit integers
Modulus a 64-bit unsigned integer by a 32-bit unsigned integer

Modulus a 64-bit unsigned integer by a 64-bit unsigned integer

Multiply a 64-bit unsigned integer by a 32-bit unsigned integer

Determine if a 64-bit unsigned integer is nonzero

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 1-9

Chapter 1. Overview

< neqg64m Determine if two 64-bit unsigned integers are not equal

e notédm Perform a bitwise NOT of a 64-bit unsigned integer

e orédm Perform bitwise OR of two 64-bit unsigned integers

e shl6dm Shift a 64-bit unsigned integer left by an unsigned 32-bit integer count

e shr64m Shift a 64-bit unsigned integer right by an unsigned 32-bit integer count

= sub64m Subtract a 64-bit unsigned integer from another 64-bit unsigned integer

e add64_3m Subtract two 64-bit unsigned integers and store the result in a separate parameter.

1.4.3. Constraints

The following constraints are being imposed by the 64-bit arithmetic functions:

= 64-bit unsigned integer operations are sufficient, i.e. 64-bit signed arithmetic operations are not sup-
ported.

< Multiply functions are limited to 64-bit by 32-bit unsigned operations. For example, a 64-bit unsigned
integer may be multiplied by a 32-bit unsigned integer. No 64-bit by 64-bit operations are supported
for this category of functions.

1.4.4. Libraries

The 64-bit arithmetic functions are included in the libhpss libraries. Refer to Section 3.1.3 for a description
of the libraries.

1.5. MPI-10 API

1.5.1. Purpose

The MPI-10 API is a subset of the MPI-2 standard. It gives applications written for a distributed memory
programming model an interface that offers coordinated access to HPSS files from multiple processes.
These processes can read and write data from a single file in parallel using HPSS’s third-party transfer
facilities. The interface also lets applications specify discontiguous patterns of access to files and memory
buffers using the same “datatype” constructs that the Message-Passing Interface (MPI) offers. Files read
and written through the HPSS MPI-10 can also be accessed through the HPSS Client API, so even though
the MPI-10 subsystem does not offer all the migration, purging, and caching operations that are available
in HPSS, parallel applications can still do these tasks through the HPSS Client API.

1-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

1.5.2. Components

The MPI-10 API consists of the following major categories:
= File Manipulation

= File Access

= File Interoperability

= File Consistency

= Error Handling

= File Hints

File Manipulation APIs are used to open (including create), close, or delete MPI-10 files, and to set or get
characteristics of an open file, such as file size and file view. Some of these APIs are collective and some
are noncollective; collective APIs require that all the processes that opened a file must participate in the
operation. The File Manipulation APIs are: MPI_File_open, MPI_File_close, MPI_File_delete,
MPI_File_set_size, MPI_File_preallocate, MPI_File_get_size, MPI_File_get_group,
MPI_File_get_amode, MPI_File_set_info, MPI_File_get_info, MPI_File_set_view, MPI_File_get_view.

File Access APIs are used to read or write files. The APIs within this category may use either explicit off-
sets, individual (per-process) file pointers, or shared file pointers to specify the position in the file for read-
ing or writing. These APIs may be either collective or noncollective. Furthermore, reads and writes may
be either blocking or nonblocking.

The File Access APIs for explicit offset positioning include: MPI_File_read_at, MPI_File_read_at _all,
MPI_File_write_at, MPI_File_write_at_all, MPI_File_iread_at, MPI_File_iwrite_at,
MPI_File_read_at_all_begin, MPI_File_read_at_all_end, MPI_File_read_at_all_end,
MPI_File_write_at_all_begin, and MPI_File_write_at_all_end.

The File Access APIs for individual file pointer positioning include: MPI_File_read, MPI_File_read_all,
MPI_File_write, MPI_File_write_all, MPI_File_iread, MPI_File_iwrite, MPI_File_read_all_begin,
MPI_File_read_all_end, MPI_File_write_all_begin, MPI_File_Write_all_end, MPI_File_seek,
MPI_File_get_position, and MPI_File_get_byte offset.

The File Access APIs for shared file pointer positioning include: MPI_File_read_shared,
MPI_File_write_shared, MPI1_File_iread_shared, MPI_File_iwrite_shared, MPI_File_read_ordered,
MPI_File_write_ordered, MPI_File_read_ordered_begin, MPI_File_read_ordered_end,
MPI_File_write_ordered_begin, MPI_File_write_ordered_end, MPI_File_seek_shared, and
MPI_File_get_position_shared.

File Interoperability APIs are used to specify how file data must be converted when read or written, if the
data representation in the file differs from that in the program. These APIs include:
MPI_File_get_type _extent and MPI_Register_datarep.

File Consistency APIs are used to allow applications to coordinate accesses by multiple processes in order
to guarantee the consistency of data in a file. These APIs include: MPI_File_set_atomicity,
MPI_File_get_atomicity, and MPI_File_sync.

HPSS Programmer’s Reference, Vol. 1 December 2000 1-11
Release 4.2, Revision 1

Chapter 1. Overview

Error Handling APIs enable applications to modify the default MPI error handling facilities provided for
files on a per-file-handle basis. These APIs include: MPI_File_create_errhandler,
MPI_File_set_errhandler, MPI_File_get_errhandler, MPI_File_call_errhandler.

File Hints APIs are used to provide system specific information about a file, to enable MPI-10 to poten-
tially optimize data accesses. These APIs include: MPI_Info_create, MPI_Info_set, MPI_Info_delete,

MPI_Info_get, MPI_Info_get_valuelen, MPI_Info_get_nkeys, MPI_Info_get_nthkey, MPI_Info_dup,
and MPI_Info_free.

1.5.3. Constraints

The following constraints are being imposed by the MPI-10 API:

= The host environment must provide a host MPI message passing library. That is, MPI-1O is currently
layered over existing MPI-1 functionality. It is designed to be compatible with any MPI-2 implementa-
tion as well, although there may be redefinition conflicts in some MPI-2 environments.

< The MPI library must support multithreading; specifically, it must permit multiple threads within a
process to issue MPI calls concurrently, subject to the limitations described in the MPI-2 standard.

< MPI applications must be compiled with the <mpio.h> header file to properly link with the MPI-10
library.

1.5.4. Libraries

Applications must be linked with the MPI-10 API library:

libmpioapi.a MPI-IO library
In addition, the following HPSS libraries must be linked:

libhpss.a HPSS API and common utilities library
These libraries in turn require that the following are linked:

libmpi.a

libEncina.a

libEncClient.a

libdce.a

Lastly,there are platform-specific libraries on which the preceding libraries depend, and you must also
include these libraries.

For AlIX:

1-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

libdcepthreads.a
libpthreads_compat.a
libpthreads.a

For Solaris:
libnsl.a
libsocket.a

For the Solaris loader, you also have to specify -z muldefs to allow the presence of multiple definitions
across the libraries.

Note: the libraries should be loaded in the order indicated.

1.5.5. Environment Variables

Any of the HPSS Client APl environment variables may be used by an MPI-10 application. (Refer to the
HPSS Client API environment variables, section 1.1.5). In particular, all MPI-10 applications need to spec-
ify an appropriate site-dependent value for:

HPSS LS NAME HPSS Location Server

In addition, applications may wish to adjust the delay used by HPSS for busy retries. MPI-10 applications
may issue concurrent HPSS accesses that result in some accesses having to wait while the file is busy.
Since the HPSS client API sleeps before retrying, if the default wait period of 15 seconds is inappropriate,
try adjusting HPSS _BUSY_DELAY to improve the application performance. For example, if the applica-
tion is using concurrent, noncollective, small transfers to the same file, resetting the delay to 0 could result
in better performance. On the other hand, if the application is using large transfers, resetting the delay to
30 could result in better performance.

In order to provide distributed multiprocess applications access to a user’s DCE credentials cache, which
is needed to authenticate a user to the HPSS servers, each user should create a keytab file. This keytab file
will contain the user’s DCE login name and encrypted password, which can be used to authenticate the
user from each of the processes at initialization time. The keytab file must be accessible to all the processes
(i.e., must be located on a file system common to all the processors on which the processes will execute).

To create the keytab file, the user must use the rgy_edit command interactively and after the prompt enter:
rgy_edit=>kta -p login_name -f keytab_path

The user will be prompted for a password, and asked to verify the password by retyping it. The permis-

sions for the keytab file should be set to disallow access by the world (e.g., ‘640’ is recommended). Note

that this keytab file only needs to be created once for each environment, but it would have to be updated

for any password changes for the user.

When running a distributed MPI-10 application, use the following environment variables to guarantee the
DCE login context will be consistent across the processes:

HPSS Programmer’s Reference, Vol. 1 December 2000 1-13
Release 4.2, Revision 1

Chapter 1. Overview

MPIO_LOGIN_NAME login_name

MPIO_KEYTAB_PATH keytab_path
where login_name is as used to create the keytab file, and keytab_path is the path name of the keytab file.
The following environment variable can be used to enable error messages to be issued from MPI-10:

MPIO_DEBUG any_nonzero_integer_value

1.6. Storage Concepts

This section defines key HPSS storage concepts which have a significant impact on the usability of HPSS.
Configuration of the HPSS storage objects and policies is the responsibility of your HPSS administrator.

1.6.1. Class of Service

Class of Service (COS) is an abstraction of storage system characteristics that allows HPSS users to select a
particular type of service based on performance, space, and functionality requirements. Each COS
describes a desired service in terms of characteristics such as minimum and maximum file size, transfer
rate, access frequency, latency, and valid read or write operations. A file resides in a particular COS and
the class is selected when the file is created. Underlying a COS is a storage hierarchy that describes how
data for files in that class are to be stored in HPSS.

COS is specified at file create time. COS hints and priority structures are passed to HPSS in the
hpss_Open function. Contact your HPSS administrator to determine the Classes of Service which have
been defined. The following command may also be used to list the defined Classes of Service:

Ishpss -cos

Refer to Chapter 5 of the HPSS User’s Guide for information on the Ishpss command. A class of service is
implemented by a Storage Hierarchy of one to many Storage Classes. Storage Hierarchies and Storage
Classes are not directly visible to the user, but are described below since they map to Class of Service. The
relationship between storage class, storage hierarchy, and COS is shown in Figure 3-1.

1.6.2. Storage Class

An HPSS Storage Class is used to group storage media together to provide storage with specific character-
istics for HPSS data. The attributes associated with a Storage Class are both physical and logical. Physical
media in HPSS are called physical volumes. Physical characteristics associated with physical volumes are
the media type, block size, the estimated amount of space on volumes in this class, and how often to write
tape marks on the volume (for tape only). Physical media are organized into logical virtual volumes. This
allows striping of physical volumes. Some of the logical attributes associated with the Storage Class are
virtual volume block size, stripe width, data transfer rate, latency associated with devices supporting the
physical media in this class, and storage segment size (disk only). In addition, the Storage Class has
attributes that associate it with a particular migration policy and purge policy to help in managing the
total space in the Storage Class.

1-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

1.6.3. Storage Hierarchy

An HPSS Storage Hierarchy consists of multiple levels of storage with each level representing a different
storage media (i.e., a storage class). Files are moved up and down the Storage Hierarchy via stage and
migrate operations, respectively, based upon storage policy, usage patterns, storage availability, and user
request. For example, a Storage Hierarchy might consist of a fast disk, followed by a fast data transfer and
medium storage capacity robot tape system, which in turn is followed by a large data storage capacity, but
relatively slow data transfer tape robot system. Files are placed on a particular level in the hierarchy
depending on the migration policy and staging operations. Multiple copies of a file may also be specified
in the migration policy. If data is duplicated for a file at multiple levels in the hierarchy, the more recent
data is at the higher level (lowest level number) in the hierarchy. Each hierarchy level is associated with a
single storage class.

1.6.4. File Family

A file family is an attribute of an HPSS file that is used to group a set of files on a common set of tape vir-
tual volumes. Release 4.1 supports grouping of files only on tape volumes. In addition, families can only
be specified in Release 4.1 by associating a family with a fileset, and creating the file in the fileset. When a
file is migrated from disk to tape, it is migrated to a tape virtual volume assigned to the family associated
with the file. If no family is associated with the file, the file is migrated to the next available tape not asso-
ciated with a family (actually to a tape associated with family zero). If no tape virtual volume is associated
with the family, a blank tape is reassigned from family zero to the file’s family. The family affiliation is pre-
served when tapes are repacked. Configuring file families is a System Administrator function.

1.7. User IDs

After the HPSS system is configured, the necessary accounts must be created for HPSS users. Contact your
HPSS administrator to add an account.

For Client APl and MPI-10 access, a DCE account must be created. The administrator can use the follow-
ing command to add a new DCE account. (Contact your HPSS administrator to add new DCE accounts.)

hpssuser -add user -dce

HPSS Programmer’s Reference, Vol. 1 December 2000 1-15
Release 4.2, Revision 1

Chapter 1. Overview

1.8. Access Conwl List API

1.8.1. Purpose

The access control list API is a set of routines for managing access control lists (ACLs). The routines pro-
vide a way to convert ACLs from string format into a form suitable for use by the client API routines.
They also provide a way to call the client API routines using ACLs and string format, and a way to convert
ACLs back from client API format to string format. In particular, the string conversion routines take care
of translating user, group and cell names into UIDs, GIDs and Cell IDs respectively.

These APIs are supplied in a library named libhacl.a.

1-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 1. Overview

1.8.2. Components

The access control list library (libhacl) contains the following routines:

hacl_ConvertACLToHACL - convert ACL to string format
hacl_ConvertHACLTOACL - convert ACL to HPSS format
hacl_ConvertHACLToString - convert ACL to a form suitable for printing
hacl_ConvertHACLPermsToPerms - convert permission string to HPSS format
hacl_ConvertHACLTypeToType - convert ACL entry type to HPSS format
hacl_ConvertPermsToHACLPerms - convert HPSS permission mask to string
hacl_ConvertStringsToHACL - convert ACL strings to HACL format
hacl_ConvertTypeToHACLType - convert ACL entry type to string
hacl_DeleteHACL - delete selected entries from an object’s ACL
hacl_GetHACL - get an object’s ACL

hacl_SetHACL - replace an object’s ACL with a new one

hacl_SortHACL - sort ACL into canonical order

hacl_UpdateHACL - change selected entries in an object’s ACL

1.8.3. Constraints

These routines do not currently work with the non-DCE Client API library.

1.8.4. Libraries

The access control list APIs are available in in libhacl.a. Some of these routines also call client API func-
tions defined in libhpss.a.

HPSS Programmer’s Reference, Vol. 1 December 2000 1-17
Release 4.2, Revision 1

Chapter 1. Overview

1.9. DCE User Accounts

As mentioned in the previous section, the Client APl and MPI-10 requires the user be logged into DCE.
The following command is used to issue a DCE login:
dce_login [principal_name][password]

When this command is entered, the principal's identity is validated, and the network credentials are
obtained. If principal name or password are not supplied, dce_login will prompt for them.

When the principal's DCE login context is no longer required, the following command may be used to
destroy the login context and associated credentials:

kdestroy

Other DCE commands which might be of interest to the user are:

klist list the primary principal and tickets held in the DCE
credentials cache
Kinit Refresh a DCE credentials cache
1-18 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

Chapter 2. Client APl Functions

This chapter specifies the HPSS client programming interface. Specifically, the following information is
provided:

e Application Programming Interfaces (APIs)

Data Definitions

2.1. API Interfaces

This section describes all API interfaces which are provided for use by another HPSS subsystem or
by a client external to HPSS. The API interface specification includes the following information:

= Name

= Synopsis

= Description

= Parameters

= Return values

= Error conditions

= Seealso

= Notes
Note that for each thread that issues an HPSS Client API call, a call must be made to
hpss_ThreadCleanUp with the thread id for that thread. This is necessary so that the client API
can free state and memory allocated to that thread.
Note that there are a number of errors that may be returned from a Client API call which are not
actually errors generated by performing the call, but are caused by a failure of the client API to suc-

cessfully initialize. These values may be returned from any routine and include:

EAGAIN An HPSS server is not ready or received a communication error,
and the request could not be retried.

ENOCONNECT The Client API could not connect to either the Location Server,
Name Server or Bitfile Server.

ENOMEM Memory could not be allocated for internal Client API State.
EPERM The user's client credentials could not be established.
EIO An internal HPSS error occurred.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-1

Release 4.2, Revision 1

Chapter 2. Client API Functions

ESTALE

ETIMEDOUT

The open file or directory is no longer valid - close and reopen the
file or directory to reestablish a valid open descriptor. This erroris
likely due to the connections to the HPSS servers being reset.

An HPSS server request timed out or received a communication
error, and the request could not be successfully retried.

2-2

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.1. hpss_Access

Purpose
Check file accessibility.

Synopsis
#include <unistd.h>
#include "hpss_api.h"

int
hpss_Access(
char *Path, /*IN*/
int Amode); [*IN */
Description

The hpss_Access function checks the accessibility of the file named by Path for the file access indi-
cated by Amode. Refer to POSIX.1 for more detailed information.

Parameters
Path Points to the path name of the file for which client accessibility is
being checked.
Amode Indicates the type of file access being checked. Refer to POSIX.1

for possible values.
Return values

If the requested access is permitted, a value of zero is returned. Otherwise, a negative value is
returned, the absolute value of which is equal to an errno value set by POSIX.1 access.

Error conditions
EACCES The permissions specified by Amode are denied, or search permis-
sion is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.
EINVAL An invalid value was specified for Amode.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
See also

hpss_Chmod, hpss_FileSetAttributes.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-3
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.2. hpss_AcctCodeToName

Purpose

Finds the Account Name associated with the given Account Code

Synopsis
#include "hpss_api.h"

int

hpss_AcctCodeToName(

acct_rec t AcctCode, /*IN*/
uuid_t *Site, /* IN/OUT */
char *AcctName) /*OUT */

Description

Finds and returns the Account Name associated with a given Account Code.

Parameters
AcctCode The Account Code to look up
Site Pointer to an area that contains the UUID of the site you are inter-
ested in. If this UUID is zeroed out or null, the index for the site
managing the current working directory is used.
AcctName The Account Name associated with the given Account Code

Return Values

Upon successful completion, hpss_AcctCodeToName returns zero. Otherwise,

hpss_AcctCodeToName returns a negative value; the absolute value of that returned indicates the
specific error.

Error Conditions
EINVAL The given AccountCode is not valid.

EFAULT The AcctName is a NULL pointer

See also
hpss_AcctNameToCode

Notes
None.

2-4 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.3. hpss_AcctNameToCode
Purpose
Finds the Account Code associated with the given Account Name

Synopsis
#include "hpss_api.h"

int

hpss_AcctNameToCode(

char *AcctName, /*IN/OUT */
uuid_t *Site, /*IN/OUT */
acct_rec t *AcctCode) /*OUT */

Description

Finds and returns the Account Code associated with a give Account Name. The AcctCode is
returned as a string.

Parameters
AcctName The Account Name to look up
Site Pointer to an area that contains the UUID of the site you are inter-
ested in. If this UUID is zeroed out or null, the name of the site
managing the current working directory is used.
AcctCode The Account Code associated with the given Account Name

Return Values

Upon successful completion, hpss_ AcctNameToCode returns zero. Otherwise,

hpss_AcctNameToCode returns a negative value; the absolute value of that returned indicates the
specific error.

Error Conditions
EINVAL The given Account Name is not valid.

EFAULT The account name or account code is a NULL pointer.

See also
hpss_AcctCodeToName

Notes
None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-5
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.4. hpss_Chacct

Purpose
Change the account code of an HPSS file.

Synopsis

#include "hpss_api.h"

int
hpss_Chacct(
char *Path, /*IN*/
acct_rec t AcctCode); /*IN*/
Description

The hpss_Chacct routine changes the accounting code for the file or directory named by Path.

Parameters
Path Names the file for which the account code is being changed.
AcctCode Specifies the new accounting code for the file.

Return values
Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which indicates the specific error.

Error conditions

EACCES Search permission is denied on a component of the path prefix.
EFAULT The Path parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.

EPERM The client does not have the appropriate privileges to perform the
operation or is configured for Unix-style accounting.

See also
hpss_AcctCodeToName, hpss_AcctNameToCode, hpss_ChacctByName, hpss_GetAcct,
hpss_GetAcctName, hpss_SetAcct, hpss_SetAcctByName, hpss_Chown,
hpss_SetFileAttributes

Notes

None.

2-6 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.5. hpss_ChacctByName
Purpose
Change the account code of an HPSS file or directory by specifying the account's name.

Synopsis
#include "hpss_api.h"

int
hpss_Chacct(

char *Path, /*IN*/
char *AccountName) /*IN*/

Description

The hpss_ChacctByName routine changes the accounting code for the file or directory named by

Path.
Parameters
Path Names the file or directory for which the account code is being
changed.
AccountName The account name corresponding to the new accounting code for

the file or directory.
Return Values

Upon successful completion, a value of zero is returned . Otherwise, a negative value is returned;
the absolute value of that returned indicated the specific error.

Error Conditions

EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system imposed limit,
or a component of the pathname exceeds the system imposed
limit.

ENOENT The named file does not exist, or the Path argument points to an

empty string.

ENOTDIR A component of the path prefix is not a directory.
EPERM The client does not have appropriate privilege to perform the
operation or is configured for Unix-style accounting.
EINVAL The specified AccountName is not a valid account name.
See also
HPSS Programmer’s Reference, Vol. 1 December 2000 2-7

Release 4.2, Revision 1

Chapter 2. Client API Functions

hpss_GetAcct, hpss_SetAcct, hpss_Chown, hpss_SetFileAttributes, hpss_GetAcctName,
hpss_SetAcctByName, hpss_Chacct

Notes
None.

2-8 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.6. hpss_Chdir

Purpose
Change current working directory.

Synopsis
#include “hpss_api.h”
int

hpss_Chdir(
char *Path); /*IN*/

Description
The hpss_Chdir function changes a thread’s current working directory to be the directory named
by Path.

Parameters
Path Specifies path name of the directory to which the current working
directory is to be changed.

Return values
Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 chdir.

Error conditions

EACCES Search permission is denied on a component of the path name.
EFAULT The Path parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path name is not a directory.
See also
hpss_Getcwd, hpss_Chroot.

Notes
None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-9
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.7. hpss_Chmod

Purpose
Change the file mode of an HPSS file.

Synopsis
#include "hpss_api.h"
int
hpss_Chmod(
char *Path, /*IN*/
mode _t Mode); /*IN*/
Description

The hpss_Chmod function alters the file mode associated with file named by Path.

Parameters
Path Points to the path name of the file for which the file mode is being
changed.
Mode Specifies the new value to which the file mode is to be set.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 chmod.

Error conditions

EACCES Search permission is denied on a component of the path prefix.
EFAULT The Path parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
EPERM The client does not have the appropriate privileges to perform the
operation.
See also

hpss_Chown, hpss_Stat, hpss_FileGetAttributes, hpss_FileSetAttributes.

Notes

None.

2-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.8. hpss_Chown
Purpose

Change owner and group of an HPSS File.

Synopsis
#include "hpss_api.h"
int
hpss_Chown(
char *Path, /*IN*/
uid_t Owner, /*IN*/
gid_t Group); /*IN*/
Description

The hpss_Chown function sets the user ID and group ID of the file named by Path to the values
specified by Owner and Group, respectively.

Parameters
Path Names the file for which the owner and group owner are being
changed.
Owner Specifies the new value for the owner of the file.
Group Specifies the new value for the group owner of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 chown. If the owner is
changed, the account code of the file or directory will also be changed to reflect that configured for
the new owner.

Error conditions

EACCES Search permission is denied on a component of the path prefix.
EFAULT The Path parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
EPERM The client does not have the appropriate privileges to perform the
operation.
See also
HPSS Programmer’s Reference, Vol. 1 December 2000 2-11

Release 4.2, Revision 1

Chapter 2. Client API Functions

hpss_Chmod, hpss_Stat, hpss_FileGetAttributes, hpss_FileSetAttributes.
Notes

None.

2-12 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.9. hpss_Chroot
Purpose
Change the root directory for the current client.

Synopsis
#include "hpss_api.h"

int

hpss_Chroot(
char *Path); /*IN*/

Description
The hpss_Chroot function changes the root directory for the current client. After a successful call
to hpss_Chroot, all absolute path name operations are done relative to Path, and relative operations
cannot be made out of the subtree whose root is Path.
Parameters
Path Specifies the path name of the directory that is to become the new
root directory.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EACCES Search permission is denied on a component of the path name.
EFAULT The Path parameter is a NULL pointer.

EINVAL This call was made from the nonglobal Client API library.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path name is not a directory.
See also

hpss_Chdir, hpss_Getcwd.

Notes

Note that as currently implemented, symbolic links could allow a client to access files outside the

HPSS Programmer’s Reference, Vol. 1 December 2000 2-13
Release 4.2, Revision 1

Chapter 2. Client API Functions

new root directory (since hpss_Chroot bookkeeping is maintained entirely in the client API but
symbolic links are generally handled in the Name Server). If this is a problem (the only current
projected client is the FTP server for anonymous FTP), changes could be made to ensure that the
symbolic links do not access files outside the subtree - failing if they do, or possibly traversing the
symbolic link contents within the client API.

2-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.10. hpss_ClientAPIReset
Purpose
Reset the current Client API control information.

Synopsis
#include "hpss_api.h"

void
hpss_ClientAPIReset(void);

Description
The hpss_ClientAPIReset routine will clean up the current Client API control information,
including closing server connections. The next Client API call should then reinitialize the control
information based on the current configuration information.
Parameters
None.
Return values
None.
Error conditions
None.
See also
hpss_GetConfiguration, hpss_SetConfiguration.

Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-15
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.11. hpss_Close
Purpose
Close afile.

Synopsis
#include "hpss_api.h"

int
hpss_Close(
int Fildes); /*IN*/
Description
The hpss_Close function terminates the connection between the file handle, Fildes, and the file to
which it is associated. The file handle and any associated resources are deallocated and can be

reused by a subsequent call to hpss_Open.

Parameters
Fildes Specifies the file handle obtained from a previous hpss_Open.

Return values

Upon successful completion, hpss_Close returns zero. Otherwise, hpss_Close returns a negative
value; the absolute value of which is equal to an errno value set by POSIX.1 close.

Error conditions

EBADF The specified file descriptor is out of range, or does not refer to an
open file.
EBUSY The file is currently in use by another client thread.
See also

hpss_Open, hpss_OpenBitfile, hpss_ReopenBitfile.
Notes

None.

2-16 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.12. hpss_Closedir
Purpose
Close an open directory stream.

Synopsis
#include "hpss_api.h"

int
hpss_Closedir(
int Dirdes); /*IN*/

Description

The hpss_Closedir function closes the directory stream corresponding to the open directory stream
handle Dirdes.

Parameters
Dirdes Specifies the open directory stream handle corresponding to the
stream to be closed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 closedir.

Error conditions

EBADF The specified directory descriptor does not refer to an open
directory.
EBUSY The directory is currently in use by another client thread.
See also

hpss_Opendir.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-17
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.13. hpss_ConvertldsToNames
Purpose
Convert UIDs to user names, GIDs to group names, and/or cell IDs to cell names.

Synopsis
int

hpss_ConvertldsToNames(

int NumEntries, /*IN*/
api_namespec_t *Specs); /* IN/OUT */

Description

The hpss_ConvertldsToNames function converts a batch of Unix UIDs to user names, GIDs to group
names, and/or cell ids to cell names. Each entry in the Specs array tells what kind of translation is
needed for that entry. The function is provided to minimize the number of RPCs that must be used
when a non-DCE client needs to translate ACLs.

Parameters
NumEntries Number of entries in the Specs array.
Specs Pointer to an area that contains information for defining a prin-

cipal, which is to be converted, and the results of the conversion.
Return Values

Upon successful completion this routine returns zero. Otherwise it returns an error value
describing the problem.

Error Conditions

EINVAL The Specs array has an entry that contains a zero cell id.
ENOCONNECT A problem with the security registry.

EFAULT A name is too long to fit into specs

EAGAIN Default for security registry error

See also
hpss_ConvertNamesTolds

Notes

The Specs array must contain NumEntries elements of type api_name_spec_t. Each array element
has a Type field that determines how the element will be translated. If the Type is
NAMESPEC_SKIP, then the Id and Cellld fields will be ignored, and the Name and CellName fields
will be set to undefined values. NAMESPEC_SKIP enables ACL editors to deal with ACL entry
types, such as the mask object, which do not contain any ids.

If the Type is set to NAMESPEC_CELL, then the Cellld field will be translated into a cell name,
which is returned in the CellName field. In this case, the Id field will be ignored and the Name field

2-18 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

will be set to an undefined value. On the other hand, if the Type is set to NAMESPEC_USER or
NAMESPEC_GROUP, then the function returns the user or group name in the Name field as well
as filling in the CellName field.

If, at any point during the translation process, an array entry is found that cannot be translated, the
routine will return immediately. In this case, the Name and CellName fields of each Specs array entry
should be considered undefined, but the Type, Id and Cellld fields will remain unchanged from their
initial values. Therefore the caller may need to keep a copy of the Specs array if the name fields will
be needed again.

If the principal cannot be found in the desired cell, then the routine does not return an error, but
rather just stores an ASCII representation of the principal’s id in the Name field. Likewise, if the
cell cannot be found in the trusted cell table, then the routine returns the cell id in the CellName
field. This allows the caller to deal with principals and/or cells that no longer exist. The caller may
detect this“error” by scanning for numeric data in these fields.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-19
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.14. hpss_ConvertNamesTolds
Purpose
Convert user names to UIDs, group names to GIDs , and/or cell names to cell IDs.

Synopsis
int

hpss_ConvertNamesTolds(

int NumEntries, /*IN*/
api_namespec_t *Specs); /* IN/OUT */

Description

The hpss_ConvertNamesTolds function converts an array of user names to UIDs, group names to
GIDs, and/or cell names to cell IDs. Each entry in the Specs array tells what kind of translation is
needed for that entry. The function is provided to minimize the number of RPCs that must be used
when a non-DCE client needs to translate ACLs.

Parameters
NumEntries Number of entries in the Specs array.
Specs Pointer to an area that contains information for defining a prin-

cipal, which is to be converted, and the results of the conversion.
Return Values

Upon successful completion this routine returns zero. Otherwise it returns an error value
describing the problem.

Error Conditions
ENOENT One or more entries in the Specs array specified a principal or cell
name that could not be found.

ENOCONNECT A problem with the security registry.
EINVAL Non-numeric principal id was specified.

See also
hpss_ConvertldsToNames

Notes

The Specs array must contain NumEntries elements of type api_name_spec_t. Each array entry has
a Type field that determines how that element will be translated. If the element’s Type is
NAMESPEC_SKIP, then the Name and CellName fields will be ignored and the Id and Cellld fields
will be set to undefined values. This is used to help ACL editors deal with ACL entry types, such
as the mask object, which do not contain any names.

If the element’s Type is set to NAMESPEC_CELL, the CellName field is translated into a cell id,
which is returned in the Cellld field. In this case, the Name field will be ignored and the Id field will
be set to an undefined value. On the other hand, if Type is set to NAMESPEC_USER or

2-20 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

NAMESPEC_GROUP, the function returns the UID or GID in the Id field as well as filling in the
Cellld field.

If the element’s Name and/or CellName fields are strings or digits, the routine does not try to verify
that the principal and/or cell actually exist. Rather, it just returns the corresponding values in the
Id and Cellld fields. This allows the caller to deal with principals and/or cells that no longer exist.
In this situation, the routine does not return ENOENT.

If at any point during the translation process, an array entry is found that cannot be translated, the
routine will return immediately. In this case, the Id and Cellld fields of each Specs array entry should
be considered undefined, but the Type, Name, and CellName fields will remain unchanged from their
initial values. Therefore the caller may need to keep a copy of the Specs array if the id fields will be
needed again.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-21
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.15. hpss_Create
Purpose

Create an HPSS file.

Synopsis
#include “hpss_api.h”
int
hpss_Create(
char
mode _t
hpss_cos_hints_t
hpss_cos_priorities_t
hpss_cos_hints_t
Description

*Path, /*IN*/
Mode, /*IN*/
*Hintsln, /*IN*/
*HintsPri, /*IN*/
HintsOut); / OUT */

The hpss_Create function creates the specified file, if it does not already exist. The newly created
or previously existing file is not opened (see hpss_Open).

Parameters
Path

Mode

Hintsln

HintsPri

HintsOut

Return values

Names the file to be opened or created.

Specifies the file mode used for determining the mode for the
created file.

Points to an hpss_cos_hints_t structure which provides allocation
hints to HPSS as to the expected structure or access of the file. This
argument may be a NULL pointer.

Points to an hpss_cos_priorities_t structure which provides the
relative priorities associated with the fields contained in the
HintsIn structure. This arguement may be a NULL pointer.

Points to an hpss_cos_hints_t structure which will contain the
values actually used when the file is created. This argument may
be a NULL pointer.

Upon successful completion, hpss_Create returns zero. Otherwise, hpss_Create returns a negative
value; the absolute value of which is equal to an errno value, defined below.

Error conditions
EACCES

EEXIST

EINVAL

Search permission is denied on a component of the Path prefix or
the file does not exist and write permission is denied for the parent
directory of the file to be created.

The named file exists.

One or more values in the HintsIn parameter is invalid.

2-22

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

ENAMETOOLONG The length of the Path string exceeds the system-imposed path
name limit or a path name component exceeds the system-
imposed limit.

ENOSPC Resources could not be allocated for the new file.

ENOTDIR A component of the Path prefix is not a directory.

See also

hpss_Open, hpss_Umask.

Notes
This function differs from the POSIX creat in that no attempt is made to open the file and it behaves
as if the O_EXCL flag were set (see EEXIST, above).
HPSS Programmer’s Reference, Vol. 1 December 2000 2-23

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.16. hpss_DeleteACL

Purpose

Removes entries from the Access Control List of a file.

Synopsis

#include "hpss_api.h"

int
hpss_Delete ACL(
char

unsigned32
ns_ACLConfArray_t

Description

*Path, /*IN*/
Options, /*IN*/
*ACL); /*IN*/

The hpss_Delete ACL function removes the ACL entries specified by ACL from the file named by

Path.

Parameters
Path

Options

ACL

Return values

Names the file for which the ACL is being removed.

Bit vector used to specify what type of ACL is to be retrieved. One
of:

HPSS_ACL_OPTION_OBJ - return object's normal ACL.

HPSS_ACL_OPTION_IO - return the initial-object ACL. (only
valid for directory objects)

HPSS_ACL_OPTION_IC - return the initial-container ACL. (only
valid for directory objects)

Points to the list of ACL entries to be removed.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned.

Error conditions
EACCES

EFAULT

EINVAL

ENAMETOOLONG

ENOENT

Search permission is denied on a component of the path prefix.
The Path or ACL parameter is a NULL pointer.

Exactly one of the HPSS_ACL_OPTION_* bits must be set in the
Options bit vector to avoid receiving this error.

The length of the Path argument exceeds the system-imposed
limit, or a component of the path name exceeds the system-
imposed limit.

The named file does not exist, or the Path argument points to an
empty string.

2-24

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

ENOTDIR A component of the Path prefix is not a directory.
EPERM The client does not have the appropriate privileges to perform the
operation.
ESRCH A specified ACL entry did not match an existing ACL entry for the
file.
See also

hpss_GetACL, hpss_SetACL ,hpss_UpdateACL.

Notes
This function is supported in the standard Client API library, but not in the non-DCE Client API
library.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-25

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.17. hpss_Fclear
Purpose
Clear part of afile.

Synopsis
#include "hpss_api.h"

int

hpss_Fclear(
int Fildes, /*IN*/
u_signed64 Length); /*IN*/

Description

The hpss_Fclear routine clears part of an open file, specified by Fildes, the current file offset and

Length. A hole will be created in the file covering the part of the file that was cleared, and its storage
resource may be freed accordingly.

Parameters
Fildes Specifies the file descriptor identifying the open file for which part
is to be cleared.
Length

Specifies the number of bytes to be cleared.
Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EBADF The specified file descriptor does not correspond to a file opened
for writing.
EBUSY The specified file descriptor is currently in use.
See also

hpss_FclearOffset, hpss_Truncate, hpss_Ftruncate.

Notes
None.

2-26 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.18. hpss_FclearOffset
Purpose

Clear part of a file beginning at the specified offset.

Synopsis
#include "hpss_api.h"
int
hpss_FclearOffset(
int Fildes, /*IN*/
u_signed64 Offset, /*IN*/
u_signed64 Length); /*IN*/
Description

The hpss_FclearOffset routine clears part of an open file, specified by Fildes, the current file Offset
and Length. A hole will be created in the file covering the part of the file that was cleared, and
storage resources may be freed accordingly.

Parameters
Fildes Specifies the file descriptor identifying the open file of the part to
clear.
Offset Specifies where to begin clearing the file.
Length Specifies the number of bytes to be cleared.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,;
the absolute value of that returned is equal to an errno value defined below.

Error conditions

EBADF The specified file descriptor does not correspond to a file opened
for writing.

EBUSY The specified file descriptor is currently in use.
EINVAL The Length or Offset argument is invalid.

See also
hpss_Fclear.

Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-27

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.19. hpss_FileGetAttributes
Purpose

Get attributes for a file.

Synopsis
#include “hpss_api.h”
int
hpss_FileGetAttributes(
char *Path, /*IN*/
hpss_fileattr_t *AttrOut); /*OUT */
Description

The hpss_FileGetAttributes function returns the file attribute structure for the file named by Path.
The attributes are returned in the structure pointed to by AttrOut.

Parameters
Path Points to the path name of the file being queried.
AttrOut Points to the structure that will hold the file attributes.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which indicates the specific error.

Error conditions

EACCES Search permission is denied for a component of the path prefix.
EFAULT The Path or AttrOut parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
See also

hpss_FileSetAttributes, hpss_Stat, hpss_Fstat, hpss_Lstat, hpss_GetListAttrs, hpss_ReadAttrs.
Notes

None.

2-28 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.20. hpss_FileGetXAttributes
Purpose

Get extended attributes for a file.
Synopsis

#include “hpss_api.h”

int
hpss_FileGetXAttributes(
char *Path, /*IN*/
unsigned32 Flags, /*IN*/
unsigned32 StorageLevel, /*IN*/
hpss_xfileattr_t *Attrout); /*OUT */
Description

The hpss_FileGetXAttributes function returns the file extended attribute structure for the file
named by Path. The file may currently be open, but is not required to be open. The attributes are
returned in the structure pointed to by AttrsOut.

Parameters
Path Points to the pathname of the file being queried.

Flags Specifies the flag that indicates the behavior of the call. The accept-
able values are:

API_GET_STATS_FOR_LEVEL - Returns bitfile attributes at the
storage level specified by the StoragelLevel argument.

API_GET_STATS_FOR_1STLEVEL - Returns bitfile attributes at
the first storage level whether or not it contains bitfile data.

API_GET_STATS_FOR_OPTIMIZE - Returns only StripeWidth and
OptimumAccessSize for storage level zero.

API_GET_STATS_ALL_LEVELS - Returns bitfile attributes across
all storage class levels.

StorageLevel Specifies the specific storage level to query when the
API_GET_STATS_FOR_LEVEL flag is used.

AttrOut Points to the structure that will hold the file attributes.
Return values

Upon successful completion, a value of zero is returned . Otherwise, a negative value is returned;
the absolute value of that returned indicates the specific error.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-29
Release 4.2, Revision 1

Chapter 2. Client API Functions

Error conditions
EACCES

EFAULT

ENAMETOOLONG

ENOENT

ENOTDIR

See also

Search permission is denied for a component of the path prefix.
The Path or AttrOut parameter is a NULL pointer.

The length of the Path argument exceeds the system imposed limit,
or a component of the pathname exceeds the system imposed
limit.

The named file does not exist, or the Path argument points to an
empty string.

A component of the path prefix is not a directory.

hpss_FileSetAttributes, hpss_Stat, hpss_Fstat, hpss_Lstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

This call allocates memory for the returned physical volume conformant array. After the successful
completion of this call, the memory should be freed using code similar to the example below.

for(i=0;i<HPSS_MAX_STORAGE_LEVELS;i++)

{

for(j=0;j<AttrOut.BFSAttr. SCALttrib[i]. NumberOfVVs;j++)

{

if (AttrOut.BESALttr. SCAttrib[i]. VVAttrib[j].PVList != NULL)

{

free(AttrOut.BFSAttr. SCAttrib[i]. VVALtrib[j]. PVList);

}
}
}

2-30

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.21. hpss_FileSetAttributes
Purpose

Alter file attribute values.

Synopsis
#include “hpss_api.h”
int
hpss_FileSetAttributes(
char *Path, /*IN*/
u_signed64 NSSelFlags, /*IN*/
u_signed64 BFSSelFlags, /*IN*/
hpss_fileattr_t *Attrin, /*IN*/
hpss_fileattr_t *AttrOut); /*OUT */
Description

The hpss_FileSetAttributes function changes file attributes for the file named by Path, based on
the attributes in the structure pointed to by Attrin. The updated file attributes after the completion
of the request are returned in the structure pointed to by AttrOut.

Parameters
Path Points to the name of the file for which attribute values are to be
changed.

NSSelFlags Specifies the bitmask which indicates which attributes are to be set
in the Name Server attribute.

ATTRINDEX_ACCOUNT
ATTRINDEX_ACL_MASK_PERMS
ATTRINDEX_BIT_FILE_ID
ATTRINDEX_CLASS_OF_SERVICE
ATTRINDEX_COMMENT
ATTRINDEX_COMPOSITE_PERMS
ATTRINDEX_EXPIRATION_DATE
ATTRINDEX_FILE_SIZE
ATTRINDEX_FOREIGN_PERMS
ATTRINDEX_GID
ATTRINDEX_GROUP_PERMS
ATTRINDEX_LINK_COUNT
ATTRINDEX_MAX_SEC_LABEL
ATTRINDEX_OTHER_PERMS
ATTRINDEX_SET_GID_ON_EXE
ATTRINDEX_SET STICKY_BIT
ATTRINDEX_SET_UID_ON_EXE
ATTRINDEX_TIME_LAST BILLED
ATTRINDEX_TIME_LAST_READ
ATTRINDEX_TIME_LAST WRITTEN
ATTRINDEX_TIME_OF_METADATA_UPDATE
ATTRINDEX_TYPE
ATTRINDEX_UID
ATTRINDEX_UNAUTH_PERMS

HPSS Programmer’s Reference, Vol. 1 December 2000 2-31
Release 4.2, Revision 1

Chapter 2. Client API Functions

BFSSelFlags

Attrin

AttrOut

Return values

ATTRINDEX_USER_PERMS

Bitmask which indicates which attributes are to be set in the Bitfile
Server attributes:

BFS_SET_CURRENT_POSITION
BFS_SET_DATA_LEN
BFS_SET_CREATE_TIME
BFS_SET_MODIFY_TIME
BFS_SET_WRITE_TIME
BFS_SET_READ_TIME
BFS_SET_OWNER_REC
BFS SET _COS ID
BFS SET_ACCT
BFS_SET_SECURITY
BFS_SET_REGISTER_BITMAP
Points to a structure containing the new attribute values.

Points to a structure that will contain the file attribute values after
completion of this request.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which indicates the specific error.

Error conditions
EACCES

EFAULT

EINVAL

ENAMETOOLONG

ENOENT

ENOSPC

ENOTDIR

EOPNOTSUPP

EPERM

See also

Search permission is denied for a component of the path prefix.
The Path, Attrin or AttrOut parameter is a NULL pointer.

An attribute value or selection flag is invalid.

The length of the Path argument exceeds the system-imposed
limit, or a component of the path name exceeds the system-

imposed limit.

The named file does not exist, or the Path argument points to an
empty string.

Resources could not be allocated to satisfy the request.
A component of the Path prefix is not a directory.
The requested change is not supported.

The client does not have the appropriate privileges to change the
file's attributes.

hpss_FileGetAttributes, hpss_Chown, hpss_Chmod, hpss_Utime.

Notes

2-32

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-33
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.22. hpss_FilesetCreate

Purpose

Create an HPSS fileset.
Synopsis

#include “hpss_api.h”

int

hpss_FilesetCreate(
uuid_t
ns_FilesetAttrBits_t
ns_FilesetAttrs_t
ns_AttrBits_t
ns_Attrs_t
ns_FilesetAttrBits_t
ns_AttrBits_t
ns_FilesetAttrs_t
ns_Attrs_t
ns_ObjHandle_t

Description

*NameServer, /*IN*/
FilesetAttrBits, /*IN*/
*FilesetAttrs, /*IN*/
ObjectAttrBits, /*IN*/
*ObjectAttrs, /*IN*/
RetFilesetAttrBits, /*IN*/
RetObjectAttrBits, /*IN*/
*RetFilesetAttrs, /*OUT */
*RetObjectAttrs, /*OUT */
*FilesetHandle); /*OUT */

The hpss_FilesetCreate function is called to create a new HPSS fileset. If a NULL NameServer
UUID parameter is specified the root Name Server will be used. A handle to the newly created
fileset is returned in the memory pointed to by FilesetHandle.

Parameters

NameServer
FilesetAttrBits
FilesetAttrs
ObjectAttrBits
ObjectAttrs
RetFilesetAttrBits
RetObjectAttrBits,
RetFilesetAttrs
RetObjectAttrs

FilesetHandle

Return values

Points to the Name Server uuid to be used for the create.
Specifies which fileset attributes are to be set.

Points to the fileset attributes to be set.

Specifies which object attributes are to be set.

Points to the object attributes to be set.

Specifies which fileset attributes were set.

Specifies which object attributes were set.

Points to the fileset attributes that were set.

Points to the object attributes that were set.

Points to the fileset handle created.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;
the absolute value of that returned is equal to an errno value.

2-34

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

Error conditions

EACCES The user is not the root user or a trusted user.

EFAULT The FilesetHandle, FilesetAttrs, ObjectAttrs, RetFilesetAttrs or the
RetObjectAttrs parameter are NULL pointers.

EINVAL The file attributes or attributes bits are invalid.

EEXIST A file already exist with the specified identifier.

See also
hpss_FilesetDelete, hpss_FilesetGetAttribute, hpss_FilesetSetAttributes.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-35
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.23. hpss_FilesetDelete
Purpose

Delete and HPSS fileset.
Synopsis

#include “hpss_api.h”

int
hpss_FilesetDelete(
char *Name, /*IN*/
u_signed64 *Filesetld, /*IN*/
ns_ObjHandle_t *FilesetHandle); /*IN*/
Description

The hpss_FilesetDelete function is called to delete an existing HPSS fileset by either name, id or
handle. A filesets can be identified by either a name, an ID, or the handle to its root. Only one type
of identifier can be specified. The other values must be NULL pointers.

Parameters
Name Specifies the name of the fileset to be deleted.
Filesetld Specifies the id of the fileset to be deleted.
FilesetHandle Specifies the handle of the fileset to be deleted.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;
the absolute value of that returned is equal to an errno value.

Error conditions

EACCES The user is not the root user or a trusted user.
ENOENT The specified fileset does not exist.
EINVAL More that one type of fileset identifier was specified.
EFAULT The Name, FilesetID and FilesetHandle arguments are all NULL
pointers.
See also

hpss_FilesetCreate, hpss_FilesetGetAttribute, hpss_FilesetSetAttributes.

Notes

None.

2-36 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.24. hpss_FilesetGetAttributes
Purpose

Get attributes for an HPSS fileset.
Synopsis

#include “hpss_api.h”

int

hpss_FileGetSetAttributes(

char *FilesetName, /*IN*/
u_signed64 *Filesetld, /*IN*/
ns_ObjHandle_t *FilesetHandle, /*IN*/
uuid_t *NameServerUUID, /*IN*/
ns_FilesetAttrBits_t FilesetAttrBits, /*IN*/
ns_FilesetAttrs_t *FilesetAttrs); /* OUT */

Description

The hpss_FilesetGetAttributes function is called to retrieve the attribute for a specified HPSS file
set by supplying either a name, id or handle. Only one type of identifier can be specified. The other
values must be NULL pointers. If NULL is specified for the Name Server UUID, then the local
Name Server will be contacted; otherwise the specified Name Server will be contacted to retrieve
the fileset information.

Parameters
Name Specifies the name of the fileset to retrieve attributes for.
Filesetld Specifies the id of the fileset to retrieve attributes for.
FilesetHandle Specifies the handle of the fileset to retrieve attributes for.
NameServerUUID The Name Server to contact managing the fileset information.
FilesetAttrBits Specifies the fileset attribute bits that specify the fileset attributes

to retrieve.

FilesetAttrs Points to the returned fileset attributes.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,;
the absolute value of that returned is equal to an errno value.

Error conditions

EACCES The user is not the root user or a trusted user.
ENOENT The specified fileset does not exist.
EINVAL More that one type of fileset identifier was specified or invalid file

set attribute bits were specified.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-37
Release 4.2, Revision 1

Chapter 2. Client API Functions

EFAULT The Name, FilesetID and FilesetHandle arguments are all NULL
pointers.

See also
hpss_FilesetSetAttributes, hpss_FilesetCreate, hpss_FilesetDelete.
Notes

None.

2-38 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.25. hpss_FilesetListAll
Purpose

Obtain a list of all the HPSS filesets.
Synopsis

#include “hpss_api.h”

int

hpss_FilesetListAll(
u_signed64 Offsetln, /*IN*/
unsigned32 Entries, /*IN*/
unsigned32 *End, /*OUT */
u_signed64 *OffsetOut, /*OUT */
hpss_global fsent_t *FSentPtr); /*OUT */

Description

The hpss_FilesetListAll function is called to get the global fileset attributes for all the filesets in the

HPSS site.
Parameters

Offsetln Specifies the offset of the first fileset entry to be read. This should
be set to zero to start before the first call, and subsequent entries
can be read by provided the value returned in OffsetOut.

Entries Specifies the size of the entry buffer, FSentPtr, in
hpss_global_fsent_t entries.

End Points to an area to contain indication of whether the last fileset
entry is included in the returned list.

OffsetOut Points to area to contain offset of the next fileset entry following
those returned by this call.

FSentPtr Points to area to contain returned fileset entries.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,;
the absolute value of that returned is equal to an errno value.

Error conditions
EFAULT The End, OffsetOut or DirenPtr parameter is a NULL pointer.

See also
hpss_FilesetCreate.
Notes

This API is used by setting Offsetln to the starting point for the lookup (usually zero). ‘Entries’ is

HPSS Programmer’s Reference, Vol. 1 December 2000 2-39
Release 4.2, Revision 1

Chapter 2. Client API Functions

the number of filesets entries for which you have allocate space. OffsetOut is the point that the
lookup as at when it accumulated the specified number of entries. This is typically used to specify
the new starting offset (Offsetln). End is a flag indicating that the end of the list was encountered
before the all the entries were accumulated.

2-40 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.26. hpss_FilesetSetAttributes
Purpose

Set attributes for an HPSS fileset.
Synopsis

#include “hpss_api.h”

int

hpss_FilesetSetAttributes(
char *Name, /*IN*/
u_signed64 *Filesetld, /*IN*/
ns_ObjHandle_t *FilesetHandle, /*IN*/
ns_FilesetAttrBits_t FilesetAttrBitsin, /*IN*/
ns_FilesetAttrs_t *FilesetAttrsin, /*IN*/
ns_FilesetAttrBits_t FilesetAttrBitsOut, /*IN*/
ns_FilesetAttrs_t *FilesetAttrsOut); /*OUT */

Description

The hpss_FilesetSetAttributes function is called to set the attribute for a specified Name Server file
set by either name, id or handle.

Parameters

Name Specifies the name of the fileset to retrieve attributes for.

Filesetld Specifies the id of the fileset to retrieve attributes for.

FilesetHandle Specifies the handle of the fileset to retrieve attributes for.

FilesetAttrBits Specifies the fileset attribute bits that specify the fileset attribute
values that are to be set.

FilesetAttrs Points to the fileset attribute values to be set.

FilesetAttrBitsOut Specifies the fileset attribute bits that specify the fileset attribute
values that are to be returned.

FilesetAttrsOut Points to the returned fileset attribute values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;
the absolute value of that returned is equal to an errno value.

Error conditions

EACCES The user is not the root user or a trusted user.
ENOENT The specified fileset does not exist.
EINVAL More that one type of fileset identifier was specified or invalid file

set attributes (or attribute bits) were specified.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-41
Release 4.2, Revision 1

Chapter 2. Client API Functions

EFAULT The Name, FilesetID and FilesetHandle arguments are all NULL
pointers.

See also
hpss_FilesetGetAttributes, hpss_FilesetCreate, hpss_FilesetDelete.
Notes

None.

2-42 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.27. hpss_Fpreallocate
Purpose

Set the length of a file and preallocate storage segments
Synopsis

#include "hpss_api.h"

int
hpss_Fpreallocate(
int Fildes, /*IN*/
u_signed64 Length); /*IN*/
Description

The hpss_Fpreallocate routine sets the length of an open file, specified by the Fildes argument. The
Length parameter specifies the requested length. It must be greater than the current size of the file.
Additional storage space is preallocated for the file and a hole is created in the file from the current
size to the requested length.

Parameters
Fildes Speficies file descriptor identifying file to be queried.
Length Specifies the desired length of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,;
the absolute value of that returned is equal to an errno value defined below.

Error conditions

EBADF The specified file descriptor does not correspond to a file opened
for writing.
EBUSY The specified file descriptor is currently in use.
ENOSPC The requested storage resources could not be allocated.
EINVAL There is not a disk storage class at the top of the storage hierarchy.
See also

hpss_Preallocate, hpss_Ftruncate, hpss_Truncate, hpss_Fclear, hpss_FileSetAttributes.
Notes

There must be a disk storage class at the top of the storage hierarchy in which the file resides.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-43
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.28. hpss_Fstat
Purpose

Get file status (POSIX).
Synopsis

#include "hpss_api.h"
int

hpss_Fstat(
int Fildes, /*IN*/
struct stat *Buf); /*OUT */

Description

The hpss_Fstat function obtains information about the open file identified by Fildes and returns it
in the structure pointed to by Buf. Refer to POSIX.1 for more detailed information.

Parameters
Fildes Specifies the file descriptor identifying the file to be queried.
Buf Points to a stat structure that will contain the information for the

file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 stat.

Error conditions
EBADF The file descriptor supplied does not correspond to an open file.

EFAULT The Buf parameter is a NULL pointer.

See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,
hpss_Stat, hpss_Lstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

None.

2-44 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.29. hpss_Ftruncate
Purpose

Set the length of a file.
Synopsis

#include "hpss_api.h"

int
hpss_Ftruncate(
int Fildes, /*IN*/
u_signed64 Length); /*IN*/
Description

The hpss_Ftruncate routine sets the length of an open file, specified by the Fildes argument. If the
new file length is less than the current length, the space allocated beyond the new length will be
freed. If the new length is greater than the current length, a hole is created in the file.

Parameters
Fildes Specifies the file descriptor identifying the open file for which the
length is to be set.
Length Specifies the new length of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EBADF The specified file descriptor does not correspond to a file opened
for writing.
EBUSY The specified file descriptor is currently in use.
See also

hpss_Truncate, hpss_Fclear, hpss_FileSetAttributes.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-45
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.30. hpss_GetAcct
Purpose

Query the default and current account codes.
Synopsis

#include "hpss_api.h"

int
hpss_GetAcct(
acct_rec t *RetDefAcct, /*OUT */
acct_rec t *RetCurAcct); /*OUT */
Description

The hpss_GetAcct routine returns the default and current account codes for the calling thread. If
the value returned in RetDefAcctis HPSS_ ACCT_USE_UID (currently defined as -1), this indicates
that the client is configured for Unix-style accounting.

Parameters
RetDefAcct Points to an area that will contain the default account code.
RetCurAcct Points to an area that will contain the current account code.

Return values

Upon successful completion, hpss_GetAcct returns zero. Otherwise, hpss_GetAcct returns a
negative value; the absolute value of which indicates the specific error.

Error conditions
EFAULT The RetDefAcct or RetCurAcct parameter is a NULL pointer.

See also

hpss_AcctCodeToName, hpss_AcctNameToCode , hpss_Chacct, hpss_ChacctByName,
hpss_GetAcctName, hpss_SetAcct, hpss_SetAcctByName

Notes

None.

2-46 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.31. hpss_GetAcctName
Purpose
Retrieve the current account name.

Synopsis
#include "hpss_api.h"

int
hpss_GetAcctName(
char *AcctName) /*OUT */
Description
The hpss_GetAcctName routine retrieves the name of the current session account for this thread.
Since each site contacted by each thread in the Client API can have its own session account name,

the account name for the site managing the current working directory is returned.

Parameters
AcctName The name of the thread's current session account.

Return Values

Upon successful completion, hpss_GetAcctName returns 0. Otherwise, hpss_GetAcctName
returns a negative value; the absolute value of that returned indicates the specific error.

Error Conditions
EINVAL The client is configured for Unix-style accounting, and therefore
the account name has no relevance. Or, a NULL AcctName was
provided.

See also
hpss_GetAcct, hpss_Chacct, hpss_SetAcct, hpss_SetAcctByName, hpss_ChacctByName.

Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-47
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.32. hpss_GetACL

Purpose

Query the Access Control List of a file.

Synopsis

#include "hpss_api.h"

ns_ACLConfArray_t

int
hpss_GetACL(
char
unsigned32
Description

*Path, /*IN*/
Options, /*IN*/
**ACL); /*0OUT */

The hpss_GetACL function returns the access control list information for the named file.

Parameters
Path

Options

ACL

Return values

Names the file for which the ACL is being queried.

Bit vector used to specify what type of ACL is to be retrieved. One
of:

HPSS_ACL_OPTION_OBJ - return object's normal ACL.

HPSS_ACL_OPTION_IO - return the initial-object ACL. (only
valid for directory objects)

HPSS_ACL_OPTION_IC - return the initial-container ACL. (only
valid for directory objects)

Points to the beginning of the returned list of ACL entries.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below:

Error conditions
EACCES

EFAULT

EINVAL

ENAMETOOLONG

ENOENT

Search permission is denied on a component of the path prefix.
The Path or ACL parameter is a NULL pointer.

Exactly one of the HPSS_ACL_OPTION_* bits must be set in the
Options bit vector to avoid receiving this error.

The length of the Path argument exceeds the system-imposed
limit, or a component of the path name exceeds the system-
imposed limit.

The named file does not exist, or the Path argument points to an

2-48

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

empty string.

ENOTDIR A component of the Path prefix is not a directory.
EPERM The client does not have the appropriate privileges to perform the
operation.
See also

hpss_SetACL, hpss_DeleteACL, hpss_UpdateACL.

Notes
This function is supported in the standard Client API library, but not in the non-DCE Client API
library.
The use is responsible for freeing the ACL return parameter.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-49

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.33. hpss_GetBFSStats

Purpose
Query Bitfile Server statistics.
Synopsis

#include "hpss_api.h"

int
hpss_GetBFSStats(
bfs_stats t *StatsOut); /*OUT */
Description

The hpss_GetBFSStats routine returns the number of stages, migrations, purges, and deletes.

Parameters
StatsOut Points to an area that will contain the current BFS statistics values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The StatsOut parameter is a NULL pointer.

See also
hpss_SetBFSStats.
Notes

None.

2-50 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.34. hpss_GetConfiguration
Purpose

Query the current Client API configuration information.
Synopsis

#include "hpss_api.h"

long
hpss_GetConfiguration(
api_config_t *ConfigOut); /*OUT */
Description

The hpss_GetConfiguration routine returns the current configuration values for the Client API.
Parameters
ConfigOut Points to an area that will contain the current configuration
attribute value settings.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The ConfigOut parameter is a NULL pointer.

See also
hpss_SetConfiguration.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-51
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.35. hpss_Getcwd
Purpose

Get current working directory.
Synopsis

#include "hpss_api.h"

int
hpss_Getcwd(
char *Buf, /* OUT */
size t Size); /*IN*/
Description

The hpss_Getcwd function copies an absolute path name of the current working directory to the
character array pointed to by Buf. The Size argument is the size in bytes of the array pointed to by

Buf.
Parameters
Buf Points to an array to contain the current working directory path
name.
Size Specifies the size, in bytes, of the array pointed to by Buf.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 getcwd.

Error conditions

EACCES Read or Search permission is denied on a component of the path
name.

EFAULT The Buf parameter is a NULL pointer.

EINVAL The Size argument is zero.

ERANGE The Size argument is greater than zero, but smaller than the length

of the path name plus 1.
See also
hpss_Chdir, hpss_Chroot.
Notes

hpss_Getcwd is altered from POSIX.1 getcwd in that it returns an integer value to be more consis-
tent with other HPSS calls.

2-52 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.36. hpss_GetListAttrs
Purpose

Get attributes for a file, suitable for a directory listing.
Synopsis

#include "hpss_api.h"

int
hpss_GetListAttrs(
char *Path, /*IN*/
ns_Attrs_t *AttrOut); /*OUT */
Description

The hpss_GetListAttrs function returns the attributes associated with the file named by Path. The
attributes include information suitable for a long directory listing, including 64-bit file length and
Class of Service.

Parameters
Path Points to the path name of the file being queried.
AttrOut Points to a stat structure that will contain the attribute information

for the file.
Return values

Upon successful completion, a value of zero is returned . Otherwise, a negative value is returned,
the absolute value of which indicates the specific error.

Error conditions

EACCES Search permission is denied for a component of the path prefix.
EFAULT The Path or AttrOut parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,
hpss_Stat, hpss_Fstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-53
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.37. hpss_JunctionCreate
Purpose

Create a junction to an HPSS fileset or directory.
Synopsis

#include "hpss_api.h"

int

hpss_JunctionCreate(

char *Path, /*IN*/
ns_ObjHandle_t *SourceHandle, /*IN*/
ns_ObjHandle_t *JunctionHandle); /* OUT */

Description

The hpss_JunctionCreate function is called to create a HPSS junction to the specified directory or
fileset handle.

Parameters
Path Specifies path name of the new junction.
SourceHandle Points to the directory or fileset handle that is used for the source
of the new junction.
JunctionHandle Specifies the returned handle for the newly created junction.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;
the absolute value of that returned is equal to an errno value.

Error conditions

EFAULT Either the Path or SourceHandle parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system imposed limit,
or a component of the pathname exceeds the system imposed
limit.

ENOENT The Path argument points to an empty string.

EEXISTT The named path already exists in the HPSS name space.

EACCES The requesting client is not the root user or a trusted user with

write permissions.
EINVAL The SourceHandle parameter doesn’t point to a directory handle.
See also

hpss_FilesetCreate, hpss_JunctionDelete.

2-54 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-55
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.38. hpss_JunctionDelete
Purpose

Delete a junction.
Synopsis

#include "hpss_api.h"

int
hpss_JunctionDelete(
char *Path); /*IN*/
Description

The hpss_JunctionDelete is called to delete the junction specified by the Path input parameter.

Parameters
Path Specifies the name of the junction to be deleted.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;
the absolute value of that returned is equal to an errno value.

Error conditions
ENOENT The Path parameter is an empty string or doesn’t refer to an
existing object

EFAULT The Path parameter is NULL.
EINVAL The Path parameter doesn’t refer to a junction.
EACCES The requesting client is not the root user or a trusted user with

write permissions.
See also
hpss_JunctionCreate, hpss_JunctionCreateHandle.
Notes

None.

2-56 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.39. hpss_Link
Purpose

Create a hard link to an existing HPSS file.
Synopsis

#include "hpss_api.h"

int
hpss_Link(
char *Existing, /*IN*/
char *New); /*IN*/
Description

The hpss_Link routine creates a hard link to an existing file (hard links to directories are not
currently supported), given the path name of the existing file, Existing, and the path name of the
new link, New.

Parameters
Existing Specifies the path name of the existing file to which the link is to
be created.
New Specifies the path name of the new link.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or
write permission is denied on the parent directory of the new link.

EEXIST The object identified by New already exists.

EFAULT The Existing or New parameter is a NULL pointer.

EPERM The object specified by Existing is a directory.

EMLINK The number of links to the file named by Existing would exceed

the system-imposed limit.

ENAMETOOLONG The length of the Existing or New argument exceeds the system-
imposed path name limit or a path name component exceeds the
system-imposed limit.

ENOENT No entry exists for the specified file.
ENOTDIR A component of the path prefix is not a directory.
See also
HPSS Programmer’s Reference, Vol. 1 December 2000 2-57

Release 4.2, Revision 1

Chapter 2. Client API Functions

hpss_Symlink, hpss_Unlink.
Notes

None.

2-58 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.40. hpss_LoadThreadState
Purpose

Updates the user credentials and file/directory creation mask for the current thread's Client API
state.

Synopsis

#include "hpss_api.h"

int
hpss_LoadThreadState(
uid_t UserID, /*IN*/
mode _t Umask); /*IN*/
Description

The hpss_LoadThreadState routine updates the user credentials and file/directory creation mask
found in the current thread's Client API state.

Parameters
UserlD Specifies the user ID for the user whose credentials are to be
loaded.
Umask Specifies the new file/directory creation mask.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT Credentials for the specified user could not be obtained.

See also
hpss_XLoadThreadState, hpss_LoadDefaultThreadState
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-59
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.41. hpss_LoadDefaultThreadState

Purpose

Special interface to allow well behaved clients to manipulate the global thread state so that all
threads will use the new state.

Synopsis

#include "hpss_api.h"

int
hpss_LoadDefaultThreadState(
uid_t UserID, /*IN*/
mode _t Umask, /*IN*/
char *ClientFullName); /*IN*/
Description

The hpss_LoadDefaultThreadState routine updates the global thread state so that all threads will
use the new state. After this call, hpss_LoadThreadState routine is effectively disabled because for
each new API the credentials are reloaded from the global thread state.

Parameters
UserlD Specifies the user ID for the user whose credentials are to be
loaded.
Umask Specifies the new file/directory creation mask.
ClientFullName Specifies the client full quailified name in the following format /
.../{dce cell name}/username (eg./../

dce.sandia.gov/jtjoker)

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT Credentials for the specified user could not be obtained.

See also
hpss_LoadThreadState, hpss_XLoadThreadState
Notes

None.

2-60 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.42. hpss_Lseek
Purpose

Set the current file offset for an open file, given a 32-bit value.
Synopsis

#include <unistd.h>
#include "hpss_api.h"

off t
hpss_Lseek(
int Fildes, /*IN*/
off t Offset, /*IN*/
int Whence); /*IN*/
Description

The hpss_Lseek function sets the file offset for the open file handle, Fildes. Refer to POSIX.1 for
more detailed information.

Parameters
Fildes Specifies the open file handle for which the file offset is to be set.
Offset Specifies the number of bytes to be used in calculating the new file
offset - dependent on the value of Whence as to the final effect on
the new file offset.
Whence Specifies how to interpret the Offset parameter in setting the file

pointer associated with the Fildes parameter. Values for the
Whence parameter are as follows:

SEEK_SET - file offset set to Offset.
SEEK_CUR - file offset set to current offset plus Offset.
SEEK_END - file offset set to current end of file plus Offset.
Return values
Upon successful completion, hpss_Lseek returns a nonnegative value representing the resulting
offset as measured in bytes from the beginning the file. Otherwise, hpss_Lseek returns a negative

value; the absolute value of which is equal to an errno value set by POSIX.1 Iseek.

Error conditions

EBADF The specified file descriptor does not refer to an open file.
EBUSY The file is currently in use by another client thread.
EFBIG Could not represent the resulting offset in the return value.
EINVAL The Whence parameter is invalid or the resulting offset would be
invalid.
HPSS Programmer’s Reference, Vol. 1 December 2000 2-61

Release 4.2, Revision 1

Chapter 2. Client API Functions

ENOSPC Resources could not be allocated to satisfy the request.
See also

hpss_Read, hpss_Write, hpss_SetFileOffset.
Notes

None.

2-62 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.43. hpss_Lstat
Purpose

Get file status (POSIX), returning status about a symbolic link if the named file is a symbolic link.
Synopsis

#include "hpss_api.h

int
hpss_Lstat(
char *Path, /*IN*/
struct stat *Buf); /*OUT */
Description

The hpss_Lstat function obtains information about the file named by Path and returns it in the
structure pointed to by Buf. Refer to POSIX.1 for more detailed information. This function differs
from hpss_Stat, however, in that if the named file is a symbolic link, information is returned about
the link itself, not about the file to which the link points.

Parameters
Path Points to the path name of the file being queried.
Buf Points to a stat structure that will contain the information for the

file.
Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 stat.

Error conditions

EACCES Search permission is denied for a component of the path prefix.
EFAULT The Path or Buf parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,
hpss_Stat, hpss_Fstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 2-63
Release 4.2, Revision 1

Chapter 2. Client API Functions

None.

2-64 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.44. hpss_Migrate
Purpose

Migrate a file from a specified level in the storage hierarchy.
Synopsis

#include "hpss_api.h"

int
hpss_Migrate(
int Fildes, /*IN*/
unsigned32 SrcLevel, /*IN*/
unsigned32 Flags, /*IN*/
u_signed64 *RetBytesMigrated);/* OUT */
Description

The hpss_Migrate routine migrates an open file from a level in the storage hierarchy, specified by
SrcLevel. The Flags argument is used to control behavior of the request.

Parameters

Fildes Specifies the file descriptor corresponding to the file to be
migrated.

SrcLevel Identifies the level in the storage hierarchy from which the data is
to be migrated.

Flags Controls the behavior of the migrate request. Anticipated values
include:
BFS_MIGRATE_ALL - migrate entire file (required).

RetBytesMigrated Points to an area to contain the number of bytes migrated.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EBADF The supplied file descriptor does not correspond to a file opened
for writing.

EBUSY The specified file descriptor is in use.

EFAULT The RetBytesMigrated paramter is a NULL pointer.

EINVAL The Flags argument is invalid.

EPERM The client does not have the appropriate privileges to issue explicit

file migration requests.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-65
Release 4.2, Revision 1

Chapter 2. Client API Functions

See also
hpss_Purge, hpss_Stage.
Notes

None.

2-66

December 2000

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.45. hpss_Mkdir
Purpose

Create a directory.
Synopsis

#include "hpss_api.h"

int
hpss_Mkdir(
char *Path, /*IN*/
mode _t Mode); /*IN*/
Description

The hpss_Mkdir function creates a new directory with the name Path. The file permission bits of
the new directory are initialized by Mode and modified by the file creation mask of the thread.

Parameters
Path Specifies the path name to be used for the newly created directory.
Mode Specifies permission bits to be used in setting the mode of the new

directory.
Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 mkdir.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or
write permission is denied on the parent directory of the directory
to be created.

EEXIST The named file exists.
EFAULT The Path parameter is a NULL pointer.
EMLINK The link count of the parent directory would exceed the maximum

allowed number of links.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed
limit, or a component of the pathname exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.

See also

HPSS Programmer’s Reference, Vol. 1 December 2000 2-67
Release 4.2, Revision 1

Chapter 2. Client API Functions

hpss_Umask, hpss_Rmdir.
Notes

None.

2-68 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.46. hpss_Open

Purpose

Optionally create and open an HPSS file.

Synopsis
#include <fcntl.h>
#include “hpss_api.h”

int

hpss_Open(
char
int
mode _t
hpss_cos_hints_t
hpss_cos_priorities_t
hpss_cos_hints_t

Description

*Path, /*IN*/
Oflag, /*IN*/
Mode, /*IN*/
*Hintsln, /*IN*/
*HintsPri, /*IN*/
*HintsOut); /*OUT */

The hpss_Open function establishes the connection between a file, named by the Path argument,
and a file handle. If O_CREAT is specified in Oflag and the file does not exist, an attempt will be

made to create the file.

Parameters
Path

Oflag

Mode

Hintsln

HintsPri

Names the file to be opened or created.

Specifies the file status and file access modes to be assigned.
Applicable values given below may be OR'ed together. Refer to
POSIX.1 for specific behavior.

O_RDONLY
O_WRONLY
O_RDWR
O_APPEND
O_CREAT
O_EXCL
O_TRUNC

Specifies the file mode for a file that is created as a result of
O_CREAT.

Points to an hpss_cos_hints_t structure which provides allocation
hints to HPSS as to the expected structure or access of the file. This
argument may be a NULL pointer. This parameter is only used
during file creation.

Points to an hpss_cos_priorities_t structure which provides the
relative priorities associated with the fields contained in the
HintsIn structure. This parameter is only used during file creation,
and may be a NULL pointer.

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 2-69

Chapter 2.

Client API Functions

HintsOut

Return values

Points to an hpss_cos_hints_t structure which will contain the
values actually used when the file is created. This argument may
be a NULL pointer. This parameter is only used during file
creation.

Upon successful completion, hpss_Open returns a nonnegative value that is the newly allocated
file handle. Otherwise, hpss_Open returns a negative value; the absolute value of which is equal
to an errno value set by POSIX.1 open.

Error conditio

ns

EACCES

EEXIST

EFAU

LT

EINPROGRESS

EINVAL

EISDIR

EMFILE

ENFILE

ENAMETOOLONG

ENOENT

ENOSPC

ENOTDIR

See also

One of the following conditions occurred:
Search permission is denied on a component of the path prefix.
The file exists and the permissions specified by Oflag are denied.

The file does not exist and write permission is denied for the
parent directory of the file to be created.

O_TRUNC is specified and write permission is denied.
O_CREAT and O_EXCL are set and the named file exists.
The Path parameter is a NULL pointer.

The file is currently being staged. The open should be retried at a
later time.

Oflag is not valid, or one or more values input in the HintsIn
parameter is invalid.

The named file is a directory. Note that opening directories via
hpss_Open is not supported in any mode.

The client open file table is already full.

Too many files are open in the system.

The length of the Path string exceeds the system-imposed path
name limit or a path name component exceeds the system-

imposed limit.

The named file does not exist and the O_CREAT flag was not spec-
ified, or the Path argument points to an empty string.

Resources could not be allocated for the new file.

A component of the Path prefix is not a directory.

hpss_Close, hpss_Umask, hpss_OpenBitfile, hpss_Create, hpss_ReopenBitfile.

2-70

December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

Notes

Note that opening directories with hpss_Open is not supported.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-71
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.47. hpss_OpenBitfile
Purpose

Open an HPSS file, specified by bitfile ID.
Synopsis

#include "hpss_api.h"

int
hpss_OpenBitfile(
hpssoid_t *BitFilelD, /*IN*/
int OFlag, /*IN*/
hsec_UserCred_t *Ucred, /*IN*/
gss_token_t *AuthzTicket); /*IN*/
Description

The hpss_OpenBitfile routine attempts to open the bitfile identified by BitFileID. Note that this
routine cannot be used to create a bitfile; rather, hpss_Open must be used for this purpose.

Parameters
BitFilelD Points to bitfile identifier. The BitfileID is usually obtained using
hpss_FileGetAttributes

Oflags Specifies file status and file access modes to be assigned. Appli-
cable values given below may be OR'ed together. Refer to POSIX.1
for specific behavior.

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_TRUNC
Ucred Points to client's user credentials.
AuthzTicket Points to client's authorization for this file.

Return values

Upon successful completion, a nonnegative file descriptor is returned. Otherwise, a negative value
is returned, the absolute value of which is equal to an errno value defined below.

Error conditions

EACCES The client does not have permission for the requested file access.
EFAULT The BitFilelD or AuthzTicket parameter is a NULL pointer.
EINPROGRESS The file is currently being staged. The open should be retried at a
later time.
EINVAL Oflag is not valid.
2-72 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

EMFILE The client file table is already full.
ENFILE Too many files are already open in the system.
ENOENT No entry exists for the specified bitfile ID.

See also

hpss_Open, hpss_ReopenBitfile, hpss_Close.

Notes
The user cannot generate a valid Authorization Ticket. Authorization Tickets are typically used by
authorized clients. Unauthorized clients should pass a zero value for AuthzTicket.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-73

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.48. hpss_Opendir
Purpose

Open an HPSS directory.
Synopsis

#include "hpss_api.h"

int
hpss_Opendir(
char *DirName); /*IN*/
Description

The hpss_Opendir function opens a directory stream corresponding to the directory named by
DirName. The directory stream is positioned at the first entry in the directory.

Parameters
DirName Specifies the path name of the directory to be opened.

Return values

Upon successful completion, hpss_Opendir returns a nonnegative value that is the newly allo-
cated directory stream handle. Otherwise, hpss_Opendir returns a negative value; the absolute
value of which is equal to an errno value set by POSIX.1 opendir.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or
read permission is denied on the directory itself.

EFAULT The DirName parameter is a NULL pointer.
EMFILE The open file table is already full.
ENAMETOOLONG The length of the DirName argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the DirName argument points to
an empty string.

ENOTDIR A component of DirName is not a directory.
See also

hpss_Readdir, hpss_Rewinddir, hpss_Closedir.

Notes

The return value is changed from POSIX, primarily to make handling open directories and files in

2-74 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

the client API consistent.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-75
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.49. hpss_Purge

Purpose

Purge a piece of a file from a specified level in the storage hierarchy.

Synopsis

#include "hpss_api.h"

int

hpss_Purge(

Description

int

u_signed64
u_signed64
unsigned32
unsigned32
u_signed64

Fildes, /*IN*/
Offset, /*IN*/
Length, /*IN*/
StorageLevel, /*IN*/
Flags, /*IN*/

RetBytesPurged); / OUT */

The hpss_Purge routine purges part of an open file, specified by Fildes, Offset and Length from a
level in the storage hierarchy, specified by StorageLevel. The Flags argument is used to control

behavior of the request.

Parameters
Fildes

Offset

Length

StorageLevel

Flags

RetBytesPurged

Return values

Specifies the file descriptor corresponding to the file to be purged.

Specifies the offset of the start of the data to be purged. Currently
must be 0.

Specifies the length of the data to be purged. Currently must be 0.

Identifies the level in the storage hierarchy from which the data is
to be purged.

Controls the behavior of the purge request. Valid values include:
BFS_ PURGE_ALL - purge the entire file (required).

Points to an area that will contain the number of bytes purged.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
EBADF

EBUSY

EFAULT

EINVAL

The supplied file descriptor does not correspond to an open file.
The specified file descriptor is in use.
The RetBytesPurged parameter is a NULL pointer.

The Flags, Offset or Length argument is invalid.

2-76

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

EPERM The client does not have the appropriate privileges to perform
explicit purge operations.

See also
hpss_Migrate, hpss_Stage, hpss_PurgelLock
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-77
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.50. hpss_PurgelLock
Purpose

Lock (or unlock) a file into the top level of its hierarchy.
Synopsis

#include "hpss_api.h"

int
hpss_PurgelLock(
int Fildes, /*IN*/
purgelock flag t Flag /*IN*/
Description

The hpss_PurgelLock routine either locks a file in the top level of its hierarchy from being purged
or removes an existing lock.

Parameters
Fildes Specifies the file descriptor corresponding to the file to be locked/
unlocked.
Flag Controls whether the request locks or unlocks the file. Possible
values are:

PURGE_LOCK - Purge lock the file
PURGE_UNLOCK - Purge unlock the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EBADF The supplied file descriptor does not correspond to an open file.
EBUSY The specified file descriptor is in use.
ESTALE The connection for this entry is not valid.
See also
hpss_Purge.
Notes
None.
2-78 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.51. hpss_PurgelLoginContext
Purpose

Purge a login context and stop the refresh thread.
Syntax

#include <hpsscomm.h>

signed32

hpss_PurgelLoginContext(void);
Description

This routine purges the login context established by the routine hpss_SetLoginContext. It also
stops the refresh thread that was maintaining the context.

Parameters
None.

Return values

Upon successful completion, a value of zero is returned. Otherwise, one of the error conditions
below is returned.

Error conditions
HPSS_E_NOERROR Successful completion

sec_login_s_context_invalid login context was invalid

other errno values from any pthread_* routine
See also

hpss_SetLoginContext.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-79
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.52. hpss_Read
Purpose

Read a contiguous section of an HPSS file, beginning at the current file offset, into a client buffer.
Synopsis

#include "hpss_api.h"

ssize t
hpss_Read(
int Fildes, /*IN*/
void *Buf, /*IN*/
size t Nbyte); /*IN*/
Description

The hpss_Read function attempts to read Nbyte bytes from the file associated with the open file
handle, Fildes, into the client buffer pointed to by Buf.

Parameters
Fildes Specifies the open file handle associated with the file from which
data is to be read.
Buf Point to a buffer where the data is to be placed.
Nbyte Specifies the number of bytes to be read.

Return values

Upon successful completion, hpss_Read returns a nonnegative value that is the number of bytes
read, including any holes encountered. Otherwise, hpss_Read returns a negative value; the abso-
lute value of which is equal to an errno value set by POSIX.1 read.

Error conditions

EBADF The specified file descriptor does not correspond to a file opened
for reading.
EBUSY The file is currently in use by another client thread.
EFAULT The Buf parameter is out of range.
EIO An input/output or HPSS internal error occurred.
See also

hpss_Open, hpss_OpenBitfile, hpss_Write, hpss_Lseek, hpss_SetFileOffset, hpss_ReadList,
hpss_WriteList.

Notes

2-80 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-81
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.53. hpss_ReadAttrs

Purpose

Read directory entries and optionally return entry attributes.

Synopsis
#include "hpss_api.h"

int

hpss_ReadAttrs(
int
unsigned32
unsigned32
unsigned32
unsigned32
unsigned32
ns_DirEntry_t

Description

Dirdes, /*IN*/
Offsetln, /*IN*/
BufferSize, /*IN*/
GetAttributes, /*IN*/
End, / OUT */
*OffsetOut, /*OUT */
*DirentPtr); /*OUT */

The hpss_ReadAttrs routine returns a list of directory entries, which optionally includes file/direc-

tory attributes.
Parameters
Dirdes

Offsetin

BufferSize

GetAttributes

End

OffsetOut

DirentPtr

Return values

Specifies the open directory stream handle corresponding to the
directory being read.

Specifies the starting directory offset. If zero, the list will be from
the beginning of the directory.

Specifies the size of the buffer pointed to by DirentPtr, in bytes.
The maximum number of entries that fit in the buffer will be
returned, until the end of the directory is reached.

Indicates, if nonzero, that attributes will be returned with the
directory entries.

Points to an area that will contain an indication of whether the last
entry is returned in the current list.

Points to an area that will contain the directory offset at the end of
the returned list. This value can be supplied to a subsequent call
to continue with the next directory entry.

Points to a buffer to hold the returned list of directory entries and
attributes.

Upon successful completion, the return value indicates the number of directory entries in the
returned list. Otherwise, a negative value is returned, the absolute value of which is equal to an

errno value defined below.

2-82

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

Error conditions

EBADF The specified directory descriptor does not refer to an open
directory.
EBUSY The directory is currently in use by another client thread.
EFAULT The DirentPtr, End or OffsetOut parameter is a NULL pointer.
EINVAL The BufferSize parameter is zero.
See also

hpss_Opendir, hpss_Closedir.

Notes
Calling hpss_ReadAttrs does not affect the directory offset or cached directory entries that are
manipulated via hpss_Readdir and hpss_Rewinddir.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-83

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.54. hpss_Readdir
Purpose

Read a directory entry.
Synopsis

#include <dirent.h>
#include "hpss_api.h"

int
hpss_Readdir(
int Dirdes, /*IN*/
hpss_dirent_t *DirentPtr); /*OUT */
Description

The hpss_Readdir function returns a structure, DirentPtr, representing the directory entry at the
current position in the open directory stream. Reference POSIX.1 for more detailed information.

Parameters
Dirdes Specifies the open directory stream handle corresponding to the
directory being read.
DirentPtr Points to a structure that will contain the directory entry

information.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 readdir.

Error conditions

EBADF The specified directory descriptor does not refer to an open
directory.

EBUSY The directory is currently in use by another client thread.

EFAULT The DirentPtr parameter is a NULL pointer.

See also
hpss_Opendir, hpss_Rewinddir, hpss_Closedir.
Notes

hpss_Readdir is altered from POSIX.1 readdir to be more consistent with other HPSS calls. These
differences are that hpss_Readdir 1) accepts an integer directory stream handle (see

hpss_Opendir) and 2) moves the returned structure pointer to the argument list rather than the
return value.

When the end of the directory is encountered, the d_name field will be set to an empty string, and
the d_namelen field will be set to zero. These fields are in DirentPtr structure.

2-84 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.55. hpss_Readlink
Purpose

Read the value of a symbolic link (i.e., the data stored in the symbolic link).
Synopsis

#include "hpss_api.h"

int
hpss_Readlink(
char *Path, /*IN*/
char *Contents, /*OUT */
size t BufferSize); /*IN*/
Description

The hpss_Readlink routine returns the value of a symbolic link (not including any terminating
null character) specified by Path into the buffer specified by Contents. The size of the buffer is spec-
ified by BufferSize.

Parameters
Path Specifies the name of the symbolic link to be read.
Contents Points to buffer to contain the value of the symbolic link.
BufferSize Specifies the size of the buffer pointed to by Contents.

Return values

Upon successful completion, the length of the symbolic link name is returned. Otherwise, a nega-
tive value is returned, the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or
read permission is denied on the symbolic link.

EFAULT The Path or Contents parameter is a NULL pointer.
EINVAL The specified file is not a symbolic link.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The specified path name does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ERANGE The size of the Contents buffer is not big enough to contain the
contents of the symbolic link or the value of the BufferSize param-
eter is zero

HPSS Programmer’s Reference, Vol. 1 December 2000 2-85

Release 4.2, Revision 1

Chapter 2. Client API Functions

See also
hpss_Symlink.
Notes
None.
2-86

December 2000

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.56. hpss_ReadList
Purpose
Read data from an HPSS file, specifying lists for data sources and sinks.

Synopsis

#include “hpss_api.h”

int
hpss_ReadList(
10D _t *|ODPtr, /*IN*/
unsigned32 Flags, /*IN*/
IOR_t *IORPTtr); /*0OUT */
Description

The hpss_ReadL.ist function reads the file data specified by the source descriptor list in the IOD
pointed to by IODPtr and moves the data to destinations specified by the sink descriptor list in the
10D. Results of the request will be returned in the structure pointed to by IORPtr. Refer to Chapter
3 for a description of the 10D.

Parameters

IODPtr->Function
IODPtr->SrcDescLength
IODPtr->SinkDescLength

IODPtr->SrcDescList

IODPtr->SinkDescList

Flags

IORPtr->RequestiD

IORPtr->Flags

Specifies the 10D function type. Setto IOD_READ.
Specifies the number of entries in the source descriptor list.
Specifies the number of entries in the sink descriptor list.

Specifies a list of descriptors specifying the parts of the file to be
read.

Specifies a list of descriptors containing the destinations of the
data.

Specifies bitmap containing flags modifying the operation of the
read request. Valid values are;

HPSS READ_SEQUENTIAL - causes data to be read in order at
the Bitfile Server level (i.e., at any point in time, the next byte in
transfer order is being processed - not waiting for a byte later in
transfer order).

Specifies request identifier assigned to this request by the Client
API.

Specifies status flags. Valid values are:

IOR_COMPLETE - indicates the request has completed.
IOR_ERROR - indicates an error was encountered.
IOR_GAPINFO_VALID - indicates that the request specific reply
structure returned in the IOR contains information describing a
hole that was encounted during the read.

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 2-87

Chapter 2. Client API Functions

IORPtr->ReqSpecReply Specifies information describing a gap in the file (a hole in which
no data has been written) encountered during the read, if
IOD_GAPINFO_VALID is set in the IORPtr->Flags field.

IORPtr->SrcReplyLength Specifies the number of source reply descriptors.
IORPtr->SinkReplyLength Specifies the number of sink reply descriptors.
IORPtr->SrcReplyList Specifies a list of descriptors containing the data source results.
IORPtr->SinkReplyList Specifies a list of descriptors containing the data sink results.

Return values

Upon successful completion, hpss_ReadL.ist returns zero. Otherwise, hpss_ReadList returns a
negative value; the absolute value of which indicates the specific error.

Error conditions
EBADF A specified file descriptor in the source descriptor list does not
correspond to a file opened for reading.

EBUSY The file is currently in use by another client thread.

EFAULT A memory buffer specified in the sink descriptor list is out of
range.

EINVAL A source descriptor did not specify a client file address, a sink

descriptor specified an invalid address type, or Flags was invalid.
EIO An input/output or HPSS internal error occurred.
See also

hpss_Open, hpss_OpenBitfile, hpss_Read, hpss_Write, hpss_WriteList, free_ior_mem.

Notes
Data will be transferred up to the point of where a gap is encountered.
Normally, the structure pointed to by the IORPtr parameter should be zeroed out, otherwise
pointers in that structure will be used by the RPC mechanism as if they point to previously allo-
cated memory.
After the client has completed using the reply information returned in the IOR, the pointers
returned as part of the IOR should be freed using rpc_ss_client_free(). The following pointers
must be freed (if non-NULL pointers are returned):
IORPtr->ReqSpecReply
IORPtr->SrcReplyList (each element in the list must be freed)
IORPtr->SinkReplyList (each element in the list must be freed)
Memory allocated to the returned 170 Reply can be freed by calling free_ior_mem(), and supplying
the same IORPtr that was passed to the hpss_ReadList() call.
2-88 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.57. hpss_Rename
Purpose

Rename a file or directory.
Synopsis

#include "hpss_api.h"

int
hpss_Rename(
char
char
Description

*Qld, /*IN*/
*New); /*IN*/

The hpss_Rename function changes the name of the file or directory currently named by Old, to

New.

Parameters
Old

New

Return values

Specifies the path name that currently names the file or directory.

Specifies the path name to which the name is to be changed.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 rename.

Error conditions
EACCES

EFAULT

EISDIR

EMLINK

ENAMETOOLONG

ENOENT

ENOTDIR

Search permission is denied on a component of the path prefix, or
one of the directories containing Old or New denies write permis-
sion, or write permission is required and denied for a directory
pointed to by the Old or New arguments.

The Old or New parameter is a NULL pointer.

The New argument points to a directory, and the Old argument
points to a file that is not a directory.

The file named by Old is a directory, and the link count of the
parent directory of New already contains the maximum allowed
number of links.

The length of the Old or New argument exceeds the system-
imposed limit, or a component of the path name exceeds the
system-imposed limit.

The named file does not exist, or the Old or New argument points
to an empty string.

A component of the path prefix is not a directory.

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 2-89

Chapter 2. Client API Functions

The path named by New is a directory containing entries other

than dot and dot-dot.

ENOTEMPTY
See also

hpss_Unlink.
Notes

None.
2-90

December 2000

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.58. hpss_ReopenBitfile
Purpose

Given the bitfile ID, reopen an HPSS file using the same file table entry.
Synopsis

#include "hpss_api.h"

int
hpss_ReopenBitfile(
int Fildes, /*IN*/
hpssoid_t *BitFilelD, /*IN*/
int Oflag, /*IN*/
hsec_UserCred_t *Ucred, /*IN*/
gss_token_t *AuthzTicket); /*IN*/
Description

The hpss_ReopenBitfile routine reopens the bitfile specified by BitFilelD, using the file table entry
currently associated with Fildes.

Parameters

Fildes Specifies the file handle for the currently open file.

BitFilelD Points to the bitfile ID of the file to be reopened.

Oflags Specifies the file status and file access modes to be assigned.
Applicable values given below may be OR'ed together. Refer to
POSIX.1 for specific behavior.
O_RDONLY
O_WRONLY
O_RDWR
O_APPEND
O_TRUNC

Ucred Points to client's user credentials.

AuthzTicket Points to area where authorization ticket is to be returned.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EBADF Fildes does not refer to an open file.

EBUSY The open file descriptor is in use by another thread.

EFAULT The BitFilelD or AuthzTicket parameter is a NULL pointer.
HPSS Programmer’s Reference, Vol. 1 December 2000 2-91

Release 4.2, Revision 1

Chapter 2. Client API Functions

EINPROGRESS The file is currently being staged. The open should be retried at a
later time.

EINVAL Oflag does not contain a valid access mode.

ENOENT No entry exists for the specified bitfile ID.

See also

hpss_Open, hpss_OpenBitfile.

Notes
If this routine fails, the file table entry identified by Fildes is not freed (it is marked as STALE), so
that a subsequent effort can be made for this same file table entry.
2-92 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.59. hpss_Rewinddir
Purpose

Reset position of an open directory stream.
Synopsis

#include "hpss_api.h"

int
hpss_Rewinddir(
int Dirdes); /*IN*/
Description

The hpss_Rewinddir function resets the position of an open directory stream corresponding to
Dirdes to the beginning of that directory.

Parameters
Dirdes Specifies the open directory stream handle for which the position
is to be reset.

Return values

Upon successful completion, a value of zero is returned. If an error is encountered, a negative
value is returned whose absolute value is described below.

Error conditions

EBADF The specified directory descriptor does not correspond to an open
directory.
EBUSY Another client thread is currently using this directory descriptor.
See also

hpss_Opendir, hpss_Readdir, hpss_Closedir.

Notes
hpss_Rewinddir is altered from POSIX to return the values described above (whereas the POSIX
rewinddir function does not return a value). Providing a failure indication was thought to be more
important than strict POSIX compatibility.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-93

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.60. hpss_Rmdir
Purpose

Remove an HPSS directory.
Synopsis

#include "hpss_api.h"

int
hpss_ Rmdir(
char *Path); /*IN*/
Description

The hpss_Rmdir function removes the directory named by Path. The directory will only be
removed if the directory is empty.

Parameters
Path Specifies the path name of the directory to be removed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 rmdir.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or
write permission is denied on the parent directory of the directory
to be removed.

EBUSY The named directory is currently in use and cannot be removed.
EFAULT The Path parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.

ENOTEMPTY The named directory contains entries other than dot and dot-dot.
See also

hpss_Mkdir, hpss_Unlink.
Notes

None.

2-94 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.61. hpss_SetACL

Purpose

Set the Access Control List of a file.

Synopsis

#include "hpss_api.h"

int
hpss_SetACL(
char
unsigned32
ns_ACLConfArray_t
Description

*Path, /*IN*/
Options, /*IN*/
*ACL); /*IN*/

The hpss_SetACL function replaces the access control list for the file named by Path.

Parameters
Path

Options

ACL

Return values

Names the file for which the ACL is being replaced.

Bit vector used to specify what type of ACL is to be retrieved. One
of:

HPSS_ACL_OPTION_OBJ - return object's normal ACL.

HPSS_ACL_OPTION_IO - return the initial-object ACL. (only
valid for directory objects)

HPSS_ACL_OPTION_IC -return the initial-container ACL. (only
valid for directory objects)

Points to the new access control list for the file.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below:

Error conditions
EACCES

EFAULT

EINVAL

ENAMETOOLONG

ENOENT

Search permission is denied on a component of the path prefix.
The Path or ACL parameter is a NULL pointer.

Exactly one of the HPSS_ACL_OPTION_* bits must be set in the
Options bit vector to avoid receiving this error.

The length of the Path argument exceeds the system-imposed
limit, or a component of the path name exceeds the system-
imposed limit.

The named file does not exist, or the Path argument points to an

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 2-95

Chapter 2. Client API Functions

empty string.

ENOTDIR A component of the Path prefix is not a directory.
EPERM The client does not have the appropriate privileges to perform the
operation.
See also

hpss_DeleteACL, hpss_GetACL, hpss_UpdateACL.

Notes

This function is supported in the standard Client API library, but not in the non-DCE Client API
library.

2-96 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.62. hpss_SetAcct
Purpose

Change the current account code.
Synopsis

#include "hpss_api.h"

int
hpss_SetAcct(
acct_rec t NewCurAcct); /*IN*/
Description

The hpss_SetAcct routine changes the accounting code used when creating files and directories for
the current thread.

Parameters
NewCurAcct Specifies the value to be used for the account code for created files
and directories.

Return values

Upon successful completion, hpss_SetAcct returns zero. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below:

Error conditions
EINVAL The client is configured for Unix-style accounting, and therefore
the account code cannot be changed.

See also

hpss_AcctCodeToName, hpss_AcctNameToCode , hpss_Chacct, hpss_ChacctByName,
hpss_GetAcct, hpss_GetAcctName, hpss_SetAcctByName

Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-97
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.63. hpss_SetAcctByName

Purpose
Change the current account name.

Synopsis
#include "hpss_api.h"

int
hpss_SetAcctByName(
char *NewAcctName) /*IN*/

Description

The hpss_SetAcctByName routine changes the current session account name for the current site for
this thread. Since each site contacted by each thread of the Client API will have its own session
account, the account name returned is that of the site managing the current working directory.

Parameters
NewAcctName When using site-style accounting, this is the new session account
name for the current site. However, when using UID accounting,
NewAcctName can have one of several special meanings:

— means set the current session account to the UID of the user

String form of an account number (eg. "123") - means change the current session account index to
123.

User name (eg."smithj") — means use the UID of user "smithj" as the new current session account
index.

Return Values

Upon successful completion, hpss_SetAcctByName returns 0. Otherwise, hpss_SetAcctByName
returns a negative value; the absolute value of that returned indicates the specific error.

Error Conditions
ENOENT The NewAcctName specified is not valid.

EPERM The user does not have sufficient privilege to change the account
name to NewAcctName, or NewAcctName is not defined at the
site indicated by the client's current working directory.

See also
hpss_GetAcct, hpss_Chacct, hpss_SetAcct, hpss_GetAcctName, hpss_ChacctByName.

Notes
If the user’s cell ID is foreign, then a message is returned advising that site-style accounting is
required. Ifthe NewAcctName is null, the the user’s uid will be returned. If the NewAcctName is
a number, then the same number will be returned. Otherwise, the account name is looked up in
2-98 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

the DCE registry. If the entry is found, then the corresponding uid is returned. If the entry is not
found, ENOENT is returned.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-99
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.64. hpss_SetBFSStats

Purpose
Reset Bitfile Server statistics.
Synopsis

#include "hpss_api.h"

int
hpss_SetBFSStats(
bfs_stats t *StatsOut); /*OUT */
Description

The hpss_SetBFSStats routine resets the stage, migration, purge, and delete counts in the Bitfile
Server and sets the last reset time to the current time.

Parameters
StatsOut Points to an area that will contain the current BFS statistics values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The StatsOut parameter is a NULL pointer.

See also
hpss_GetBFSStats.
Notes

None.

2-100 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.65. hpss_SetConfiguration
Purpose

Update the current Client API configuration information.
Synopsis

#include "hpss_api.h"
#include “api_internal.h”

long
hpss_SetConfiguration(
api_config_t *Configin); /*IN*/
Description

The hpss_GetConfiguration routine updates the current configuration values for the Client API.
Parameters
Configln Points to a structure that contains the new configuration attributes
value settings.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
EFAULT The Configin parameter is a NULL pointer.

EINVAL Invalid configuration attribute value setting.
See also

hpss_GetConfiguration, hpss_ClientAPIReset.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-101
Release 4.2, Revision 1

Chapter 2. Cl

ient API Functions

2.1.66. hpss_SetCOSByHints

Purpose
Create a

Synopsis

n HPSS file.

#include “hpss_api.h”

int

hpss_SetCOSByHints(

Description

int

unsigned32
hpss_cos_hints_t
hpss_cos_priorities_t
hpss_cos_ md_t

Filedes, /*IN*/
Flags, /*IN*/
*HintsPtr, /*IN*/
*PrioPtr, /*IN*/
COSPtr); / OUT */

The hpss_SetCOSByHints routine is used to attempt to place a file in an appropriate Class of
Service before any data has been written to that file. This interface is primarily used when the file
size is not known at the time the file is created, but based on the knowledge of the file at the time
of the first write a better Class of Service may be determined.

Parameters
Filedes

Flags

HintsPtr

PrioPtr

COSPtr

Return values

Specifies the open file handle for which the Class of Service is to be
set.

Specifies flags which affect the processing of this request. Valid
values are:

BFS_RESET_SEGSIZE - Indicates that the request is only to set a
new storage segment size.

Points to a structure that provides attribute values for selection of
a new Class of Service or storage segment size.

Points to a structure that contains relative priorities for the
attribute values indicated by the HintsPtr parameter.

Points to a structure that will contain the attribute values for the
selected Class of Service and storage segment size.

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value, defined below.

Error conditions
EBADF

EBUSY

The specified file descriptor does not refer to an open file.

The file is currently in use by another client thread, or the Bitfile
Server could not complete the request at the current time.

2-102

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

EFAULT

EINVAL

EPERM

ENOTDIR

See also

hpss_Open, hpss_OpenBitfile.

Notes

None.

One of HinstPtr, PrioPtr, or COSPtr is a NULL pointer.
The specified COS hints are invalid.

The client does not have the appropriate privileges to perform the
request.

A component of the Path prefix is not a directory.

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 2-103

Chapter 2. Client API Functions

2.1.67. hpss_SetFileOffset

Purpose

Set the current file offset for an open file, given a 64-bit offset value.

Synopsis

#include <unistd.h>
#include "hpss_api.h"

int
hpss_SetFileOffset(
int
u_signed64
int
int
u_signed64
Description

Fildes, /*IN*/
Offsetln, /*IN*/
Whence, /*IN*/
Direction, /*IN*/
*OffsetOut); /*OUT */

The hpss_SetFileOffset function sets the file offset for the open file handle, Fildes. Refer to the
POSIX.1 Iseek function for more detailed information. Both input and output offset values are 64-
bit values, to provide accessibility to the full range of HPSS file sizes. Note that since the Offsetin
value is unsigned, theDirection parameter is provided to specify whether Offsetin should be used
to move forward or backward in the file.

Parameters
Fildes

Offsetin

Whence

Direction

OffsetOut

Return values

Specifies the open file handle for which the file offset is to be set.

Specifies the number of bytes to be used in calculating the new file
offset - dependent on the value of Whence and Direction as to the
final effect on the new file offset.

Specifies how to interpret the Offsetln parameter in setting the file
pointer associated with the Fildes parameter. Values for the
Whence parameter are as follows:

SEEK_SET - file offset set to OffsetIn.
SEEK_CUR - file offset set to current offset plus Offsetin.
SEEK_END - file offset set to current end of file plus Offsetin.

Specifies whether Offsetin should be used to move forward or
backward in the file.

HPSS SET_OFFSET_FORWARD - consider Offsetln as being a
nonnegative number.

HPSS SET_OFFSET_BACKWARD - consider Offsetin as being a
negative number.

Points to an area to contain the file offset as a result of processing
this request.

2-104

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

Upon successful completion, hpss_SetFileOffset returns zero. Otherwise, hpss_SetFileOffset
returns a negative value; the absolute value of which indicates the specific error.

Error conditions

EBADF The specified file descriptor does not refer to an open file.

EBUSY The file is currently in use by another client thread.

EFAULT OffsetOut is a NULL pointer.

EINVAL The Whence or Direction parameter is invalid or the resulting offset

would be invalid (a negative value or beyond the largest
supported file size).

ENOSPC Resources could not be allocated to satisfy the request.
See also

hpss_Read, hpss_Write, hpss_Lseek.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-105
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.68. hpss_SetLoginContext
Purpose
Establish a security context for an application.
Synopsis
#include <hpsscomm.h>
signed32 hpss_SetLoginContext(
char *PrincipalName, /*IN*/
char *KeytabName); /*IN*/
Description
This routine establishes a security context for an application. The routine gets the application's key
from the named key table. If either of the arguments is NULL, default values will be obtained from
environment variables HPSS PRINCIPALand HPSS KTAB_PATHrespectively. This routine may

be called as part of the application startup procedure. If this routine or a similar routine is not
called, the application will run in the security context defined by dce _logi n.

Parameters
PrincipalName Specifies the server's principal name.
KeytabName Specifies the file name for the key table.

Return values

Upon successful completion, a value of zero is returned. Otherwise, one of the error conditions
below is returned.

Error conditions
HPSS _E_NOERROR Successful completion

HPSS _EINVAL Invalid (NULL) parameters
DCE error codes
See also

hpss_PurgeLoginContext

Notes
In most cases, application programs should explicitly specify the principal name and keytab file
name.
This routine may only be called once. On subsequent calls, it returns error HPSS_EINVAL.
2-106 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.69. hpss_SiteldToName

Purpose
Convert a given HPSS site id to its corresponding HPSS site name.

Synopsis
#include "hpss_api.h"

int
hpss_SiteldToName(

uuid_t *Siteld, /*IN*/
char *SiteName) /*OUT */

Description
The hpss_SiteldToName routine converts the HPSS site id given in Siteld to its corresponding

string representation, returned in SiteName. When an error is encountered, hpss_SiteldToName
will return immediately.

Parameters
Siteld Pointer to an HPSS site’s UUID. If the site id is null, return the
current local site id.
SiteName An HPSS site’s text name. If the site name is null, return the

current local site name.
Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a negative value is returned; the
absolute value of that returned is equal to an errno value defined below.

Error Conditions

ENOENT The value passed in Siteld does not correspond to a known HPSS
site.
ECONN There was a communication problem during the translation.
See also

hpss_SiteNameTold

Notes
None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-107
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.70. hpss_SiteNameTold
Purpose
Convert a given HPSS site name to its corresponding HPSS site id.

Synopsis
#include "hpss_api.h"

int
hpss_SiteNameTold(

char *SiteName, /*IN*/
uuid_t *Siteld) /*OUT*/

Description

The hpss_SiteNameTold routine converts the HPSS site name given in SiteName to its corre-
sponding HPSS site id, returned in Siteld. When an error is encountered, hpss_SiteldToName will
return immediately.

Parameters
SiteName An HPSS site’s text name. If the site name is null, return the
current local site name.
Siteld A pointer to an HPSS site’s UUID. If the site id is null, return the

current local site id.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a negative value is returned; the
absolute value of that returned is equal to an errno value defined below.

Error Conditions

ENOENT The value passed in SiteName does not correspond to a known
HPSS site.
ECONN There was a communication problem during the translation.

See also
hpss_SiteldToName

Notes
None.

2-108 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.71. hpss_Stage
Purpose

Stage a piece of a file to a specified level in the storage hierarchy.
Synopsis

#include "hpss_api.h"
int

hpss_Stage(

int Fildes, /*IN*/
u_signed64 Offset, /*IN*/
u_signed64 Length, /*IN*/
unsigned32 StorageLevel, /*IN*/
unsigned32 Flags); /*IN*/

Description

The hpss_Stage routine stages part of an open file, specified by Fildes, Offset and Length to a level
in the storage hierarchy, specified by StorageLevel. The Flags argument is used to control behavior
of the request.

Parameters
Fildes Specifies the file descriptor, identifying the file to be staged.
Offset Specifies the offset of the start of the data to be staged.
Length Specifies the length of the data to be staged.
StorageLevel Identifies the level in the storage hierarchy to which the data is to
be staged. Currently, the only supported value is 0.
Flags Controls the behavior of the stage request. Valid values include:

BFS_STAGE_ALL - stage entire file.
BFS_ASYNC_CALL - return after initiating stage.
Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EBADF The supplied file descriptor does not correspond to an open file.
EINVAL The Flags, Offset or Length argument is invalid.
EBUSY The specified file descriptor is currently in use.
EPERM The client does not have the appropriate privileges to perform the
operation.
HPSS Programmer’s Reference, Vol. 1 December 2000 2-109

Release 4.2, Revision 1

Chapter 2. Client API Functions

See also
hpss_Migrate, hpss_Purge, hpss_StageCallBack.
Notes

None.

2-110 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.72. hpss_StageCallBack

Purpose

Initiate staging a piece of a file in the background.

Synopsis

#include "hpss_api.h"

int

hpss_StageCallBack(
char *Path,
u_signed64 Offset,
u_signed64 Length,
unsigned32 StorageLevel,
bfs_callback_addr_t CallBackPtr,
unsigned32 Flags,
signed32 *ReqID,
hpssoid_t *Bitfilel D);

Description

/*IN*/
/*IN*/
/*IN*/
/*IN*/
/*IN*/
/*IN*/
/*OUT */
/*OUT */

The hpss_StageCallBack routine initiates a background stage of part of a file, specified by Fildes,
Offset and Length to a level in the storage hierarchy, specified by StorageLevel. The Flags argument

is used to control behavior of the request.

Parameters

Path Specifies the pathname of the file to be staged.

Offset Specifies the offset of the start of the data to be staged.

Length Specifies the amount of the data to be staged.

StorageLevel Identifies the level in the storage hierarchy to which the data is to
be staged.

CallBackPtr Callback information.

Flags Controls the behavior of the stage request. Valid values include:
BFS_STAGE_ALL - stage entire file.

ReqlD Assigned request identification number.

BitfileID Bitfile ID.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EACCESS Search permission is denied for a component of the path prefix.

HPSS Programmer’s Reference, Vol. 1 December 2000

Release 4.2, Revision 1

2-111

Chapter 2. Client API Functions

EFAULT

EINVAL

ENAMETOOLONG

ENOENT

ENOTDIR

See also

The Path parameter is a NULL pointer.

The value of the Offset parameter is beyond the end of the file or
the StorageLevel parameter is invalid for the storage hierarchy.

The length of the Path argument exceeds the system-imposed
limit, or a component of the pathname exceeds the system-
imposed limit.

The named file does not exist, or the Path argument points to an
empty string.

A component of the Path prefix is not a directory.

hpss_Migrate, hpss_Purge, hpss_Stage.

Notes

None.

2-112

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.73. hpss_Stat
Purpose

Get file status (POSIX).
Synopsis

#include "hpss_api.h

int
hpss_Stat(
char *Path, /*IN*/
struct stat *Buf); /*OUT */
Description

The hpss_Stat function obtains information about the file named by Path and returns it in the struc-
ture pointed to by Buf. Refer to POSIX.1 for more detailed information.

Parameters
Path Points to the path name of the file being queried.
Buf Points to a stat structure that will contain the status information

for the file.
Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 stat.

Error conditions

EACCES Search permission is denied for a component of the path prefix.
EFAULT The Path or Buf parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
See also

hpss_Chown, hpss_Chmod, hpss_Utime, hpss_FileGetAttributes, hpss_FileSetAttributes,
hpss_Lstat, hpss_Fstat, hpss_GetListAttrs, hpss_ReadAttrs.

Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 2-113
Release 4.2, Revision 1

Chapter 2. Client API Functions

Note that if the named file is a symbolic link, information is returned for the file to which the
contents of the link point. See hpss_Lstat to obtain information about the symbolic link itself .

2-114 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.74. hpss_Statfs
Purpose

Returns file system information for a Class of Service.
Synopsis

#include "hpss_api.h"

int
hpss_Statfs(
unsigned long COsld, /*IN*/
struct statfs *StatfsBuffer); /*OUT */
Description

The hpss_Statfs routine returns file system information as defined in the statfs structure.

Parameters
COsld Specifies the identifier for the Class of Service that is being
queried.
StatfsBuffer Points to area to contain the file system information.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EFAULT The StatfsBuffer parameter is a NULL pointer.
EINVAL The specified Class of Service does not exist.
See also
None.
Notes
None.
HPSS Programmer’s Reference, Vol. 1 December 2000 2-115

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.75. hpss_Statvfs
Purpose
Returns file system information for a Class of Service.

Synopsis
#include "hpss_api.h"

int
hpss_Statvfs(

unsigned32 Cosld, /*IN*/
struct statvfs *StatvfsBuffer) /*OUT */

Description

The hpss_Statvfs routine returns file system information as defined in the statvfs structure for the
given Class of Service as a total from all Bitfile Servers which manage files in the Class of Service.

Parameters
Cosld The identifier for the Class of Service that is being queried.
StatvfsBuffer Pointer to area to contain the file system information.

Return Values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned;
the absolute value of that returned is equal to an errno value defined below.

Error Conditions

EFAULT The StatvfsBuffer parameter is a NULL pointer.
EINVAL The specified Class of Service does not exist.
See also
None.
Notes

The block size is that of the top storage class in the hierarchy.

The f_name field of the statvfs structure will return the CDS service name of the root Name Server.
The f_pack field of the statvfs structure will return the CDS name of the local Bitfile Server that
contains the most free space for the given Class of Service.

2-116 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.76. hpss_Symlink
Purpose

Create a symbolic link.
Synopsis

#include "hpss_api.h"

int
hpss_Symlink(
char *Contents, /*IN*/
char *Path); /*IN*/
Description

The hpss_Symlink routine creates a symbolic link pointing to the pathname specified in Contents
with the link's name identified by Path.

Parameters
Contents Specifies the path name to which the symbolic link will point.
Path Specifies the name of the symbolic link to be created.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EACCES Search permission is denied on a component of the path prefix, or
write permission is denied on the parent directory of the specified
path name.

EFAULT The Path or Contents parameter is a NULL pointer.

EEXIST The specified file already exists.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT No entry exists for a component of the path name.
ENOTDIR A component of the Path prefix is not a directory.
See also
hpss_Readlink.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-117
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.77. hpss_ThreadCleanUp

Purpose
Cleans up a thread's Client API state.
Synopsis

#include "hpss_api.h"

int
hpss_ThreadCleanUp(
pthread_t ThreadID); /*IN*/
Description

The hpss_ThreadCleanUp routine frees resources used by a thread's Client API context.

Parameters

ThreadlD Specifies the thread identifier for the thread whose resources are to
be freed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT State for the specified thread could not be found.

See also
None.

Notes

The hpss_ThreadCleanUp routine should be called once for each thread which terminates and has
previously called the Client API.

2-118 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.78. hpss_Truncate
Purpose

Set the length of a file.
Synopsis

#include "hpss_api.h"

int
hpss_Truncate(
char *Path, /*IN*/
u_signed64 Length); /*IN*/
Description

The hpss_Truncate routine sets the length of a file, specified by the Path argument. If the new file
length is less than the current length, the space allocated beyond the new length will be freed. If
the new length is greater than the current length, a hole is created in the file.

Parameters
Path Specifies the path name of the file to be truncated.
Length Specifies the new length of the file.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
EACCES Search permission is denied on a component of the path prefix, or
write permission is denied on the file.

EFAULT The Path parameter is a NULL pointer.
EINVAL Path specifies a directory.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The specified path name does not exist.
ENOTDIR A component of the Path prefix is not a directory.
See also
hpss_Ftruncate, hpss_Fclear, hpss_FileSetAttributes.
Notes

None.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-119
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.79. hpss_Umask
Purpose

Set the file creation mask.
Synopsis

#include "hpss_api.h"

mode_t

hpss_Umask(
mode _t

Description

Cmask); /*IN*/

The hpss_Umask function sets the file mode creation mask of the thread and returns the previous
value of the mask. Refer to POSIX.1 umask for further details.

Parameters
Cmask

Return values

Specifies the file mode creation mask to be used by subsequent
hpss_Open, hpss_Create and hpss_Mkdir calls.

hpss_Umask returns the previous file mode creation mask for the thread.

Error conditions

The hpss_Umask function is always successful and no return values are reserved to indicate an

error.

See also

hpss_Open, hpss_Create, hpss_Mkdir.

Notes

None.

2-120

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.80. hpss_Unlink
Purpose

Remove an entry from an HPSS directory.
Synopsis

#include "hpss_api.h"

int
hpss_Unlink(
char *Path); /*IN*/
Description

The hpss_Unlink function removes the entry named by the Path, and decrements the link count of
the file. If the link count becomes zero, the file will be deleted when it is no longer open by any
client.

Parameters
Path Names the directory entry to be removed.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 unlink.

Error conditions

EACCES Search permission is denied on a component of the path prefix, or
write permission is denied on the directory containing the link to
be removed.

EFAULT The Path parameter is a NULL pointer.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
EPERM The file named by Path is a directory.
See also

hpss_Close, hpss_Link.

Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 2-121
Release 4.2, Revision 1

Chapter 2. Client API Functions

Note that using hpss_Unlink to remove directory names is not supported.

Also note that if the Path refers to a symbolic link, the link itself shall be removed.

2-122 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.81. hpss_UpdateACL
Purpose

Update entries in the Access Control List of a file.
Synopsis

#include "hpss_api.h"

int
hpss_UpdateACL(
char *Path, /*IN*/
unsigned32 Options, /*IN*/
ns_ACLConfArray_t *ACL); /*IN*/
Description

The hpss_UpdateACL function updates entries, specified by ACL, in the access control list for the
file named by Path.

Parameters
Path Names the file for which the ACL is being updated.
Options A bit vector containing bits which control the behavior of

hpss_UpdateACL. Itis possible to specify which ACL is to be
updated, and to specify the behavior of hpss_Update ACL while
calculating the MASK_OBJ.

Options can be used to mimic the behavior of the following acl_edit options: -n, -c, and -p. This
mimicking is done using the following mutually-exclusive constants:

DONT_CALCULATE_MASK

Specifies that a new MASK_OBJ should not be calculated. This option is useful when the ACL
operations require the calculation of a new MASK_OBJ, but doing so would resultin an error. This
option allows the operations to be carried out, but a new MASK_OBJ is not calculated.

CALCULATE_MASK_IGNORE_ERRORS

Creates or modifies the object's MASK_OBJ entry with permissions equal to the union of all entries
other than type USER_OBJ, OTHER_OBJ, and UNAUTHENTICATED. This creation or modifica-
tion is done after all other modifications to the ACL are performed. The new MASK_OBJis seteven
if it grants permissions previously masked out. It is recommended that this option be used only if
not specifying it results in an error. This option is useful only for objects that support the

MASK _OBJ entry type and are required to recalculate a new MASK_OBJ after they are modified.

PURGE_MASKED_PERMS

Purges all masked permissions (before any other modifications are made). This option is useful
only for ACLs that contain an entry of type MASK_OBJ. Use it to prevent unintentionally granting
permissions to an existing entry when a new MASK_OBJ is calculated as a result of adding or
modifying an ACL entry.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-123
Release 4.2, Revision 1

Chapter 2. Client API Functions

Options can also be used to specify which ACL is to be updated. The following mutually-exclusive
constants can be used to make this selection:

HPSS_ACL_OPTION_OBIJ

HPSS_ACL_OPTION_IC

HPSS_ACL_OPTION_IO

If an update operation creates a MASK_OBJ that unintentionally adds permissions to an existing
ACL entry, the modification causing the MASK_OBJ recalculation will abort with an error unless
the CALCULATE_MASK_ IGNORE_ERRORS or DONT_CALCULATE_MASK options are
specified.

ACL Points to the ACL entries to be updated.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions

EACCES Search permission is denied on a component of the path prefix.
EFAULT The Path or ACL parameter is a NULL pointer.
EINVAL There are two sets of mutually exclusive flags available through the

Optionsparameter. Some invalid combination of flags was provided.

ENAMETOOLONG The length of the Path argument exceeds the system-imposed
limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
EPERM The client does not have the appropriate privileges to perform the
operation.
See also

hpss_DeleteACL, hpss_GetACL, hpss_SetACL.
Notes

This function is supported in the standard Client API library, but not in the non-DCE Client API
library.

2-124 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.82. hpss_Utime
Purpose

Set access and modification times of an HPSS file.
Synopsis

#include <utime.h>
#include "hpss_api.h"

int
hpss_Utime(
char *Path, /*IN*/
const struct utimbuf *Times); /*IN*/
Description

The hpss_Utime function sets the access and modification times of the file named by Path to the
values specified in the structure pointed to by Times. Refer to POSIX.1 for more detailed

information.

Parameters
Path Names the file for which times are being changed.
Times Points to a structure containing the new time values.

Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value set by POSIX.1 utime.

Error conditions

EACCES Search permission is denied on a component of the path prefix.
EFAULT The Path parameter is a NULL pointer.
ENAMETOOLONG The length of the Path argument exceeds the system-imposed

limit, or a component of the path name exceeds the system-
imposed limit.

ENOENT The named file does not exist, or the Path argument points to an
empty string.

ENOTDIR A component of the Path prefix is not a directory.
EPERM The client does not have the appropriate privileges to perform the
operation.
See also

hpss_Stat, hpss_FileGetAttributes, hpss_FileSetAttributes.

Notes

HPSS Programmer’s Reference, Vol. 1 December 2000 2-125
Release 4.2, Revision 1

Chapter 2. Client API Functions

None.

2-126 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.83. hpss_Write
Purpose

Write data from a client buffer to a contiguous section of an HPSS file, beginning at the current file
offset.

Synopsis

#include "hpss_api.h"

ssize t
hpss_Write(
int Fildes, /*IN*/
const void *Buf, /*IN*/
size t Nbyte); /*IN*/
Description

The hpss_Write function attempts to write Nbyte bytes from the client buffer pointed to by Buf to
the file associated with the open file handle, Fildes.

Parameters
Fildes Specifies the open file handle associated with the file to which data
is to be written.
Buf Points to a buffer where the data is to be found.
Nbyte Specifies the number of bytes to be written.

Return values
Upon successful completion, hpss_Write returns a nonnegative value that is the number of bytes
written. Otherwise, hpss_Write returns a negative value; the absolute value of which is equal to
an errno value set by POSIX.1 write.

Error conditions

EBADF The specified file descriptor does not correspond to a file opened
for writing.

EBUSY The file is currently in use by another client thread.

EFAULT The Buf parameter is out of range.

EFBIG The write operation would cause the file to exceed the system-

imposed maximum file length.

EIO An input/output or HPSS internal error occurred.

ENOSPC There is no free space remaining to satisfy the write request.
See also
HPSS Programmer’s Reference, Vol. 1 December 2000 2-127

Release 4.2, Revision 1

Chapter 2. Client API Functions

hpss_Open, hpss_OpenBitfile, hpss_Read, hpss_Lseek, hpss_SetFileOffset, hpss_ReadL.ist,
hpss_WriteList.

Notes

None.

2-128 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.84. hpss_WriteList

Purpose

Write data to an HPSS file, specifying lists for data source and sink.

Synopsis
#include "hpss_api.h”
int
hpss_WriteList(
10D _t
unsigned32

IOR_t

Description

*|ODPtr, /*IN*/
Flags, /*IN*/
*IORPTtr); /*0OUT */

The hpss_WriteL.ist function writes data to an HPSS file specified by the sink descriptor list in the
10D pointed to by IODPtr, moving the data from the sources specified by the source descriptor list
in the IOD. Results of the request are returned in the structure pointed to by IORPtr. Refer to
Chapter 3 for a description of the 10D.

Parameters
IODPtr->Function

IODPtr->SrcDescLength
IODPtr->SinkDescLength
IODPtr->SrcDescList

IODPtr->SinkDescList

Flags

IORPtr->RequestiD

IORPtr->Flags

IORPtr->SrcReplyLength
IORPtr->SinkReplyLength
IORPtr->SrcReplyList

IORPtr->SinkReplyList

Specifies the 10D function type. Set to IOD_WRITE.

Specifies the number of entries in the source descriptor list.
Specifies the number of entries in the sink descriptor list.
Specifies a list of descriptors specifying the sources for the data.

Specifies a list of descriptors specifying the parts of the file to be
written.

Specifies a bitmap containing flags to modify the write. Currently
only a value of zero (0) is valid.

Specifies the request identifier assigned to this request by the
Client API.

Specifies status flags. Valid values are:

IOR_COMPLETE - indicates the request has completed.
IOR_ERROR - indicates an error was encountered.

Specifies the number of source reply descriptors.
Specifies the number of sink reply descriptors.
Specifies a list of descriptors specifying the data source results.

Specifies a list of descriptors specifying the data sink results.

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 2-129

Chapter 2. Client API Functions

Return values

Upon successful completion, hpss_WriteList returns zero. Otherwise, hpss_WriteList returns a
negative value; the absolute value of which indicates the specific error.

Error conditions
EBADF

EBUSY

EFAULT

EFBIG

EINVAL

EIO

ENOSPC

See also

A specified file descriptor in the sink descriptor list does not corre-
spond to a file opened for writing.

The file is currently in use by another client thread.

A memory buffer address in the source descriptor list is out of
range.

An attempt was made to write a file that would exceed the HPSS-
defined maximum file size.

A sink descriptor did not specify a client file address, a source
descriptor specified an invalid address type, or Flags was invalid.

An input/output or HPSS internal error occurred.

There is no free space remaining to satisfy the write request.

hpss_Open, hpss_OpenBitfile, hpss_Read, hpss_Write, hpss_ReadList, free_ior_mem.

Notes
Memory allocated to the returned 170 Reply can be freed by calling free_ior_mem(), and supplying
the same IORPtr that was passed to the hpss_ReadList() call

2-130 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.85. hpss_XLoadThreadState

Purpose
Updates the user credentials and file/directory creation mask for the current thread's Client API
state, based on the specified user ID and fully-qualified DCE client name. The fully-qualified client
name allows for correct DCE cross-cell authentication and authorization to be performed.

Synopsis

#include "hpss_api.h"

int
hpss_XLoadThreadState(
uid_t UserID, /*IN*/
mode _t Umask, /*IN*/
char *ClientFullName); /*IN*/
Description

The hpss_XLoadThreadState routine updates the user credentials and file/directory creation
mask found in the current thread's Client API state, using the specified user ID and fully-qualified
DCE client name.

Parameters
UserlD Specifies the user ID for the user whose credentials are to be
loaded.
Umask Specifies the new file/directory creation mask.
ClientFullName Specifies the fully-qualified client name in the following format /
.../{dce cell name}/username (eg./../

dce.sandia.gov/jtjoker)
Return values

Upon successful completion, a value of zero is returned. Otherwise, a negative value is returned,
the absolute value of which is equal to an errno value defined below.

Error conditions
ENOENT Credentials for the specified user could not be obtained.

See also
hpss_LoadThreadState, hpss_LoadDefaultThreadState

Notes
This routine is primarily used for DCE cross-cell authentication.

Normally, the structure pointed to by the IORPtr parameter should be zeroed out, otherwise point-
ers in that structure will be used by the RPC mechanism as if they point to previously allocated
memory.

After the client has completed using the reply information returned in the IOR, the pointers

HPSS Programmer’s Reference, Vol. 1 December 2000 2-131
Release 4.2, Revision 1

Chapter 2. Client API Functions

returned as part of the IOR should be freed using rpc_ss_client_free(). The following pointers
must be freed (if non-NULL pointers are returned):

IORPtr->SrcReplyList (each element in the list must be freed)

IORPtr->SinkReplyList (each element in the list must be freed)

2-132 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.1.86. free_ior_mem

Purpose
Free memory allocated to a returned 1/0 Reply structure.

Synopsis
#include “traniod.h

void
free_ior_mem(
IOR_t *IORPtr); /*IN*/
Description
The free_ior_mem function releases the memory that was allocated to the 1/0 Reply pointed to by
IORPtr. The memory would have been previously allocated during a call to hpss_ReadList or
hpss_WriteList.
Parameters
IORPtr Points to the I/0 Reply that contains pointers to memory areas
which are to be released.
Return values
None.

Error conditions
None.

See also
hpss_ReadList, hpss_WriteL.ist.
Notes

free_ior_mem should only be used to free memory that was allocated to an 1/0 Reply returned by
a call to hpss_ReadList or hpss_WriteL.ist.

2.2. Non-DCE Client API Specific Interfaces

This section describes only those API’s that are available through the Non-DCE Client API which
are not available through the standard Client API. For notes on how the NDAPI differs from the
standard Client API, see section 1.3.

Note that there are two errors (in additon to the ones listed in section 2.1.) that may be returned
from a Non-Client API call which are not actually errors generated by performing the call, but are
caused by a failure of the library to successfully communicate with the Non-DCE Client Gateway.
These values may be returned from any routine and include:

EPIPE This indicates a communications problem with the Non-DCE
Client Gateway, between the time that the command was issued
and the time the reply was received. In cases where this error is
returned from a API that modifies the state of an HPSS object, the

HPSS Programmer’s Reference, Vol. 1 December 2000 2-133
Release 4.2, Revision 1

Chapter 2. Client API Functions

ENOCONNECT

failure or success of the operation can not be assumed and the state
of the object should be queried before continuing.An HPSS server
is not ready or received a communication error, and the request
could not be retried.

This indicates a communication problem either between between
the Non-DCE Client Library and the Non-DCE Client Gateway, or
the standard Client Library and one of the core HPSS servers
(Name Server, Bitfile Server or Location Server).

2-134

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.2.1. hpss_PVRetrievals

Purpose
Get recent requests on a physical volume.

Synopsis
#include “hpss_api.h
int
hpss_PVRetrievals(
char *PVName, /*IN*/
unsigned32 *MountCntSinceService, /* OUT */
unsigned32 *MountCntSinceMaint, /* OUT */
unsigned32 *NumReads, /*OUT */
unsigned32 *NumWrites); /*OUT */
Description

The hpss_PVRerrievals function is used to get physical volume access statistics for a selected
volume. These statistics include number of mounts since last service, number of mounts since last
maintenance, number of reads, and number of writes.

Parameters
PVName The physical volume name.
MountCntSinceService The number of mounts since last service.
MountCntSinceMaint The number of mounts since last maintainence.
NumReads The number of reads.
NumWrites The number of writes.

Return values

None.

Error conditions

None.
See also

None.
Notes

None.

2.3. Data Definitions

This section describes key internal data definitions and all externally used data definitions which are pro-
vided by this subsystem. A data definition may be represented by constructs such as data structures and

HPSS Programmer’s Reference, Vol. 1 December 2000 2-135
Release 4.2, Revision 1

Chapter 2. Client API Functions

constants. For each data definition, a description, format (including parameter descriptions), and clients

which access the data definition are provided. Note: Descriptions of the IOD and IOR structures may be
found in Chapter 3.

2-136 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.1. File Creation Hint Structure - hpss_cos_hints_t

Description

The file creation hint structure contains information that allows clients to specify preferences or knowledge
of file structure or access patterns that may affect operations of HPSS.

Format

The COS hints has the following format:

typedef struct hpss_cos_hints {

unsigned32 COsld;

char COSName [HPSS_MAX_ OBJECT_NAME];
u_signed64 OptimumAccessSize;
u_signed64 MinFileSize;
u_signed64 MaxFileSize;
unsigned32 AccessFrequency;
unsigned32 TransferRate;
unsigned32 AvglLatency;
unsigned32 WriteOps;
unsigned32 ReadOps;
unsigned32 StageCode;
unsigned32 StripeWidth;
u_signed64 StripeLength;

} hpss_cos_hints _t;
Ccosid
The class of service type. It indicates the classes of service requested for the bitfile.

COSName

Specifies the name of the class of service for this bitfile.

OptimumAccessSize

Specifies the block size in bytes for this class of service that yields the maximum data transfer rate.
MinFileSize

Specifies the minimum size in bytes of a bitfile in this class of service.

MaxFileSize

Specifies the maximum size in bytes to which the bitfile can grow and remain in this class of service.

AccessFrequency

Specifies the expected rate of access for the bitfile.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-137
Release 4.2, Revision 1

Chapter 2. Client API Functions

FREQ_HOURLY
FREQ_DAILY
FREQ_WEEKLY
FREQ_MONTHLY
FREQ_ARCHIVE

TransferRate

Specifies the approximate file transfer rate in kilobytes per second.

AvgLatency

Specifies the time in seconds from when a request is received by a storage server until data actually begins
to transmit. This is typically non-zero for tape media.

WriteOps
Specifies the valid write operations for the bitfile:
HPSS OP_WRITE Allow write operations.
HPSS_OP_APPEND Allow append operations.
ReadOps
Specifies the valid read operations for the bitfile:
HPSS_OP_READ Allow read operations.
StageCode

Specifies the staging behavior desired:

COS_STAGE_NO_STAGE File is not to be staged on open. The data will be read from the
current level in the hierarchy, or data may be
explicitly staged by the client.

COS_STAGE_ON_OPEN Entire file is to be staged to the top level in the hierarchy before
open returns.

COS_STAGE_ON_OPEN_ASYNC Entire file is to be staged to the top level in the hierarchy
without blocking in open. Reads / writes are
blocked only until the portion of the file being
accessed is staged.

COS_STAGE_ON_OPEN_BACKGROUND File is to be staged in a background task.

StripeWidth

Specifies the stripe width of the class of service.

StripeLength

Specifies the stripe length of the class of service.

2-138 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.2. Class of Service Priorities - hpss_cos_priorities_t
Description

The class of service priorities structure assists a client in selecting a COS for a bitfile.
Structure use - dynamic memory tables.

Format

The COS priorities has the following format:

typedef struct hpss_cos_priorities {

unsigned32 COSIdPriority;
unsigned32 COSNamePriority;
unsigned32 OptimumAccessSizePriority;
unsigned32 MinFileSizePriority;
unsigned32 MaxFileSizePriority;
unsigned32 AccessFrequencyPriority;
unsigned32 TransferRatePriority;
unsigned32 AvgLatencyPriority;
unsigned32 WriteOpsPriority;
unsigned32 ReadOpsPriority;
unsigned32 StageCodePriority;
unsigned32 StripeWidthPriority;
unsigned32 StripeLengthPriority;

} hpss_cos_priorities_t;
COSIdPriority
Specifies the class of service ID priority for the class of service the bitfile should be in.

COSNamePriority

Specifies the class of service name priority for this bitfile.

OptimumAccessSizePriority

Specifies the priority for the block size for this class of service that yields the maximum data transfer rate.

MinFileSizePriority

Specifies the priority for the minimum size in bytes of a bitfile in this class of service.

MaxFileSizePriority

Specifies the priority for the maximum size in bytes to which the bitfile can grow and remain in this class
of service.

AccessFrequencyPriority

Specifies the priority for the expected rate of access for the bitfile.

TransferRatePriority

HPSS Programmer’s Reference, Vol. 1 December 2000 2-139
Release 4.2, Revision 1

Chapter 2. Client API Functions

Specifies the priority for the class of service file transfer rate.

Avgl atencyPriority

Specifies the class of service priority for the average latency time from request time until data begins to
transfer.

WriteOpsPriority

Specifies the priority for the valid write operations for the bitfile.

ReadOpsPriority

Specifies the priority for the valid read operations for the bitfile.

StageCodePriority

Specifies the priority for the desired stage code.
Following are the possible priority values:
NO_PRIORITY

LOW_PRIORITY
DESIRED_PRIORITY
HIGHLY_DESIRED_PRIORITY
REQUIRED_PRIORITY

StripeWidthPriority

Specifies the stripe width priority of the storage class.

Stripel engthPriority

Specifies the stripe length priority of the storage class.

2-140 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.3. Class of Service Metadata Structure - hpss_cos_md_t

Description

The Class of Service metadata structure contains information about the configuration of a Class of Service.
Format

The Class of Service metadata structure has the following format:

typedef struct {
unsigned32 COsld;
unsigned32 Hierld;
char COSName [HPSS_MAX_ OBJECT_NAME];
unsigned32 OptimumAccessSize;
unsigned32 Flags
u_signed64 MinFileSize;
u_signed64 MaxFileSize;
unsigned32 AccessFrequency;
unsigned32 TransferRate;
unsigned32 AvglLatency;
unsigned32 WriteOps;
unsigned32 ReadOps;
unsigned32 StageCode;

} hpss_cos_md _t;

cosid

The class of service type. It indicates which of several classes of service the bitfile is in.
Hierld

The storage hierarchy associated with this Class of Service.

COSName

Specifies the name of the class of service for this bitfile.

OptimumAccessSize

Specifies the block size in bytes for this class of service that yields the maximum data transfer rate.

Flags
Optionally specifies one of the following options:

COS_ENFORCE_MAX FILE_SIZE If ON, bitfiles cannot be created in this COS with a
size greater than MaxFileSize. Attempts to do so will
result in the request being rejected with an error.
COS_FORCE_SELECTION If ON, a client must explicitly select this COS in order
to have a file assigned to it. If the client merely
supplies general COS hints for a bitfile, this COS will
not be selected.

MinFileSize

HPSS Programmer’s Reference, Vol. 1 December 2000 2-141
Release 4.2, Revision 1

Chapter 2. Client API Functions

Specifies the minimum size in bytes of a bitfile in this class of service.

MaxFileSize

Specifies the maximum size in bytes to which the bitfile can grow and remain in this class of service.

AccessFreguency

Specifies the expected rate of access for the bitfile.
FREQ_HOURLY

FREQ_DAILY
FREQ_WEEKLY
FREQ_MONTHLY
FREQ_ARCHIVE

TransferRate
Specifies the approximate file transfer rate in kilobytes per second.

AvgLatency

Specifies the time in seconds from when a request is received by a storage server until data actually begins
to transmit. This is typically non-zero for tape media.

WriteOps
Specifies the valid write operations for the bitfile:
HPSS OP_WRITE Allow write operations.
HPSS_OP_APPEND Allow append operations.
ReadOps
Specifies the valid read operations for the bitfile:
HPSS_OP_READ Allow read operations.
StageCode

Specifies the staging behavior desired

COS_STAGE_NO_STAGE File is not to be staged on open. The data will be read from the
current level in the hierarchy, or data may be
explicitly staged by the client.

COS_STAGE_ON_OPEN Entire file is to be staged to the top level in the hierarchy before
open returns.

COS_STAGE_ON_OPEN_ASYNC Entire file is to be staged to the top level in the hierarchy
without blocking in open. Reads / writes are
blocked only until the portion of the file being

2-142 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

accessed is staged.

COS_STAGE_ON_OPEN_BACKGROUND File is to be staged as a background task.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-143
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.4. File Attribute Structure - hpss_fileattr_t

Description

The file attribute structure contains file attributes that are managed by both the Name Server and the Bitfile
Server.

Format

The file attribute structure has the following format:

typedef struct hpss_filattr {

ns_ObjHandle_t NSObjectHandle;
ns_Attrs_t NSAttr;
bf_attrib_t BFSAttr;

} hpss_fileattr_t;

NSObjectHandle

Specifies the handle that refers to the open file or directory. Refer to section 2.3.8 for more detailed infor-
mation.

NSAttr
Specifies the file attributes managed by the Name Server. Reference sect for more detailed information.
BESAttr

Specifies the file attributes managed by the Bitfile Server. Reference the Bitfile Server design document for
more detailed information.

2-144 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.5. Extended File Attribute Structure - hpss_xfileattr t

Description

The file attribute structure contains file attributes that are managed by both the Name Server and the Bitfile
Server. This structure allows the user to retrieve the extended attributes for the Bitfile Server.

Format

The file attribute structure has the following format:

typedef struct hpss_xfilattr {

ns_ObjHandle_t NSObjectHandle;
ns_Attrs_t NSAttr;
bf_xattrib_t BFSAttr;

} hpss_xfileattr_t;

NSObjectHandle

Specifies the handle that refers to the open file or directory. Refer to section 2.3.8 for more detailed infor-
mation.

NSAttr

Specifies the file attributes managed by the Name Server. Reference section 2.3.6 for more detailed infor-
mation.

BESAttr

Specifies the extended file attributes managed by the Bitfile Server. Reference the Bitfile Server design doc-
ument for more detailed information.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-145
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.6. Name Server Attribute Structure - ns_Attrs t
Description

The Name Server attribute structure contains fields for the various attributes (metadata) that the Name
Server maintains for an object.

Format

The Name Server attributes structure has the following format:

typedef struct {
unsigned32 Account;
unsigned32 ACLOptions;
hpssiod_t BitFileld;
unsigned32 ClassOfService;

unsigned char

Comment[HPSS_MAX_COMMENT_LENGTH];

unsigned32 CompositePerms;
byte DMHandle[MAX_DMEPI_HANDLE_SIZE];
unsigned32 DMHandleLength;
unsigned32 EntryCount,
unsigned32 Familyld;
ns_ObjHandle_t FilesetHandle;
u_signed64 Filesetld:;
unsigned32 FilesetROOtRSN;
unsigned32 FilesetStateFlags;
unsigned32 FilesetType;
u_signed64 FileSize;
unsigned32 Flags;
uuid_t GatewayUUID;
unsigned32 GID;
unsigned32 GroupPerms;
unsigned32 LinkCount;
unsigned32 Location;
unsigned32 MACSecLabel;
unsigned32 OtherPerms;
unsigned32 SetGIDONEXxe;
unsigned32 SetStickyBit;
unsigned32 SetUIDONEXxe;
timestamp_t TimelLastRead;
timestamp_t TimeLastWritten;
timestamp_t TimeOfMetadataUpdate;
unsigned32 Type;
unsigned32 uID;
unsigned32 UserPerms;

} ns_Attrs t;

Account

Specifies opaque accounting information.

ACLOptions

Specifies Access Control List options used when setting the group permissions.

2-146 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

BitFileld

Specifies the bitfile identifier.

ClassOfService

Specifies the class of service of a file object. This field is not settable.

Comment

Specifies the uninterpreted client supplied ASCII text.

CompositePerms

Specifies the permission to an object after all ACLs have been examined and applied.

DMHandle

Specifies a handle that points back to a DMAP managed object. This field is opaque data to the Name Serv-
er.

.DMHandlelLength

Specifies the byte length of DMHandle.

EntryCount

Specifies a read-only field which contains the number of entries contained in a directory. If the object is not
a directory, the value is not defined.

Familyld

Identifies the fileset family identifier.

FilesetHandle

Specifies a Name Server object handle used to point to the root node of a fileset.
Filesetld

Specifies the fileset identifier that uniquely identifes the fileset an object belongs to.

FilesetRootRSN

Specifies a read-only field which contains the Relative Sequence Number of the root node of this fileset.

FilesetStateFlags

Contains flag bits indicating the state of the fileset. The following constants define the possible states:

NS_FS STATE_READ Read is permitted.

NS_FS STATE WRITE Write is permitted.

NS_FS STATE_DESTROYED The fileset has been destroyed. Neither reading nor writing
HPSS Programmer’s Reference, Vol. 1 December 2000 2-147

Release 4.2, Revision 1

Chapter 2. Client API Functions

will be permitted
NS_FS_STATE_READ_WRITE A combination of READ and WRITE.

NS_FS_STATE_COMBINED A combination of all bit settings above.

FilesetType

Specifies the type of the fileset the attributes are for. This is a read-only field. The following constants de-
fine the fileset types:

NS FS TYPE_HPSS ONLY This fileset is an HPSS-only fileset.
NS _FS TYPE_ARCHIVED This fileset is a backup copy of some other fileset.
NS FS TYPE_DFS ONLY This fileset is native to some other file system such as DFS.

NS _FS TYPE_MIRRORED This fileset is a mirrored copy of some other fileset such as a DFS
fileset.

Filesize
Specifies the byte size of a file, directory, or symbolic link object. This field is not settable.

Flags

Specifies a bit vector which contains information that can be expressed in boolean form. The following con-
stants define the bits in this field:

NS_ATTRS_FLAGS_EXTENDED_ACLS

Set to 1 if the object has extended ACL entries. Extended ACL
entries are all entries other than user_obj, group_obj, and
other_obj.

1D

Specifies the principal group identifier.

GroupPerms

Specifies the permissions granted to group members.
LinkCount

Specifies the number of hard links to a file object.
Location

On input, contains the DCE cell identifier of the GROUP_OBJ. On output, it may contain a DCE cell iden-
tifier; however, an output value of zero indicates the local cell.

MACSecL abel
Specifies the Mandatory Access Control Security Label.
OtherPerms

Specifies the permissions granted to ‘other’ clients.

2-148 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2.

Client API Functions

SetGIDOnNExe

For file objects:

0 = do not set GID to owner.

1 =set GID to owner.

SetStickyBit
For file objects:

0 = do not set the sticky bit.
1 = set the sticky bit.

SetUIDonExe

For file objects:

0 = do not set UID to owner.
1=set UID to owner.

TimelLastRead

Specifies the last time the object was accessed.

TimeLastWritten

Specifies the last time the object was updated.

TimeOfMetadataUpdate

Specifies the last time the metadata was updated.

Type

Specifies the ‘type’ of the object:
DIRECTORY_OBJECT directory
FILE _OBJECT file
JUNCTION_OBIJECT junction
SYM_LINK_OBIJECT symbolic link
HARD_LINK_OBJECT hard link.

This field is not settable

ulbD

Specifies the User Identifier of the object’s owner.

UserPerms

Specifies the permissions granted to the owner of the object.

HPSS Programmer’s Reference, Vol. 1 December 2000

Release 4.2, Revision 1

2-149

Chapter 2. Client API Functions

2.3.7. Name Server Fileset Attributes Structure — ns_FilesetAttrs_t

Description

The Name Server fileset attribute structure contains fields for the various attributes (metadata) that the
Name Server maintains for a fileset.

Format
typedef struct {
u_signed64 RetisterBitMap;
unsigned32 ClassOfService;
unsigned32 Familyld;
ns_ObjHandle_t FilesetHandle;
u_signed64 Filesetld;
unsigned char FilesetName[NS_FS_MAX_FS _NAME_LENGTH];
unsigned32 FilesetType;
uuid_t GatewayUUID;
unsigned32 StateFlags;
unsigned32 SubSystemid,;
byte UserData[NS_FS_MAX_USER_DATA];
u_signed64 DirectoryCount;
u_signed64 FileCount;
u_signed64 HardLinkCount;
u_signed64 JunctionCount;
u_signed64 SymLinkCount;

} ns_FilesetAttrs_t;

RegisterBitMap

A bit vector where each bit corresponds to a field in the record.
ClassOfService

The COS service configured for this fileset.

Familyld

The fileset family identifier. This id is opaque to the Name Server.
FilsetHandle

A Name Server object handle which points to the root node of the fileset.
Filesetld

The unique identifier of this fileset.

FilesetName

The unique human readable fileset name.

FilesetType

Specifies the type of the fileset the attributes are for. This is a read-only field. The following constants de-
fine the fileset types:

2-150 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

NS_FS_TYPE_HPSS_ONLY This fileset is an HPSS-only fileset.
NS_FS_TYPE_ARCHIVED This fileset is a backup copy of some other fileset.
NS_FS_TYPE_DFS_ONLY This fileset is native to some other file system such as DFS.

NS_FS_TYPE_MIRRORED This fileset is a mirrored copy of some other fileset such as a DFS
fileset.

GatewayUUID
The identifier of the gateway that processes DMAP requests for the fileset.

StateFlags

The flags that defined the state of the fileset. Valid values include;
NS_FS_STATE_READ The fileset allows reads.
NS _FS STATE_WRITE The fileset allows writes.

NS _FS STATE_DESTROYED The fileset allows no access.
SubSystemld
CDS name of the HPSS location server. This field is not currently used.
UserData
Uninterpreted data supplied by the client. This data can be ASCII, binary, or both.
DirectoryCount
The current number of directories in the fileset.
FileCount
The current number of files in the fileset.
HardLinkCount
The current number of hard links in the fileset.
JunctionCount
The current number of junctions in the fileset.

SymLinkCount

The current number of symbolic links in the fileset.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-151
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.8. Name Server Object Handle Structure - ns_ObjHandle t
Description

The Name Server object handle structure contains information that allows the Name Server to identify the
SFS record where the metadata for the object is stored.

Format

The Name Server object handle structure has the following format:

typedef struct {
unsigned32 Objld;
unsigned32 Fileld;
unsigned char Flags;
unsigned char Padi;
unsigned char Pad2;
unsigned char Pad3;
unsigned16 Generation;
unsigned char Type;
unsigned char Version;
uuid_t NameServerUUID;

} ns_ObjHandle_t;

Objld

Specifies a unique Name Server object identifier. (The Relative Sequence Number (RSN) of the SFS record
containing the metadata for the object.)

Fileld

If the Type field specifies a hardlink this is the RSN of the SFS record containing the metadata for the orig-
inal file. For all other Types this field is equal to the Objld.

Flags

Specifies a bit vector whose bits convey additional information about the object handle. The defined bit po-
sitions for the Flags field are:

NS OH_FLAG_FILESET ROOTHandle is for the root node of a fileset.

Padil

Reserved for future use.

Pad2

Reserved for future use.

Pad3

Reserved for future use.
Generation

Specifies a random number used to detect stale object handles.

Type

2-152 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

Specifies the ‘type’ of the object: file, directory, junction, symbolic link, or hard link.
Version

Specifies the Name Server version number.

NameServerUulD

Specifies the UUID of the Name Server that issued this object handle.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-153
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.9. Name Server Directory Entry - ns_DirEntry t

Description

The Name Server directory entry structure defines the contents of a Name Server directory entry.
Format

The Name Server directory entry structure has the following format:

typedef struct DirEntryTag {

ns_ObjHandle_t ObjHandle;

unsigned char Name[HPSS MAX_FILE_NAME];
unsigned32 ObjOffset;

struct DirEntryTag *Next;

ns_Attrs_t Attrs;

} ns_DirEntry_t;

ObjHandle

Specifies the Name Server object handle of the directory entry.
Name

Specifies the name of the directory entry.

ObjOffset

Specifies the offset of the entry within the directory.

Next

Points to the next directory entry.

Attrs

Specifies attributes of the directory entry.

2-154 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.10. Bitfile Volatile and Metadata Attributes - bf _attrib_t

Description

The attributes structure for the bitfile object contains all the volatile and metadata bitfile attributes. These
are parameters relating to a bitfile.

Format

The bitfile attributes structure has the following format:

typedef struct bf_attrib {

u_signed64 CurrentPosition;
signed32 OpenCount;
unsigned32 Familyld;
bf attrib_md_t BfAttribMd;

} bf_attrib_t;

CurrentPosition

Specifies the current byte position in the bitfile.

OpenCount

Specifies the current number of clients that have the bitfile open.
Familyld
Specifies the family identifier for the bitfile.

BfAttribMd

Specifies the structure of bitfile metadata attributes that are stored in the data base.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-155
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.11. Bitfile Volatile and Metadata Extended Attributes - bf xattrib_t
Description

The attributes structure for the bitfile object contains all the volatile and metadata bitfile extended at-
tributes. These are parameters relating to a bitfile and location of vaild data.

Format

The bitfile extended attributes structure has the following format:

typedef struct bf xattrib {

u_signed64 CurrentPosition;
signed32 OpenCount;
unsigned32 Familyld;

bf_sc_attrib_t SCAttrib[HPSS_MAX_STORAGE_LEVELS];
bf attrib_md_ t BfAttribMd;
} bf_xattrib_t;

CurrentPosition

Specifies the current byte position in the bitfile.

OpenCount

Specifies the current number of clients that have the bitfile open.
Familyld

Specifies the family identifier for the bitfile.

SCAttrib

Specifies the storage class attributes at each valid level in the hierarchy.
BfAttribMd

Specifies the structure of bitfile metadata attributes that are stored in the data base.

2-156 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.12. Bitfile Metadata Attributes - bf _attrib_md _t
Description

This structure contains the bitfile attributes metadata. These are parameters relating to a bitfile.

LinkCount is always 1 for a existing bitfile in currrent HPSS release. On one bfs_Bitfile(Open)SetAttrs call,
reverse maps (OwnerRec) can be either added or deleted. Both cannot be accomplished on the same call.

Format

The bitfile attributes metadata structure has the following format:

typedef struct bf_attrib_md {

u_signed64 DatalLen;
signed32 ReadCount;
signed32 WriteCount;
signed32 LinkCount;
timestamp_sec _t CreateTime;
timestamp_sec _t ModifyTime;
timestamp_sec _t WriteTime;
timestamp_sec _t ReadTime;
unsigned32 COsSld;
unsigned32 NewCOSIld;
acct_rec_t Acct;

unsigned32 Flags;
unsigned32 StorageSegMult;
bfs_owner_rec_t OwnerRec;
u_signed64 RegisterBitmap;
unsigned32 Cellld;

} bf_attrib_md_t;

Datal en

Specifies the number of bytes of actual data that the bitfile contains.

ReadCount

Specifies the count of the number of times that all or part of the bitfile has been read.
WriteCount

Specifies the count of the number of times that data has been written to the bitfile.
LinkCount

Specifies the number of links to this bitfile by Name Servers. This also indicates how many reverse map
IDs are in the bf_rev_map record for this bitfile.

CreateTime

Specifies the date and time the bitfile was created.
ModifyTime

Specifies the date and time the bitfile was last modified.

WriteTime

HPSS Programmer’s Reference, Vol. 1 December 2000 2-157
Release 4.2, Revision 1

Chapter 2. Client API Functions

Specifies the date and time when data was last written to the bitfile.
ReadTime

Specifies the date and time when the bitfile was last read.

Cosid

Specifies the class of service type (unsigned32) and indicates which of several classes of service the bitfile
isin. This ID references a class of service record that defines the parameters for this particular class of ser-
vice. When changing a file’s COS, this field is used by the hpss_FileSetAttributes function.

NewCOSId

Indicates the new class of service that a file is to be changed to when the client changes the class of service
on abitfile. When the change has been completed, the value of this field is moved into COSId and this field
is cleared. This field is read only. Use the COSId file to change a file’s COS.

Acct

Specifies the accounting metadata for the bitfile. It includes information needed to charge for data storage,
access, transfers, quotas, etc.

Flags

Contains the flag settings. Not currently used.

StorageSegMult

Storage segment multiple used to adjust size of disk storage segments.
OwnerRec

Defines the reverse map entries for a bitfile and indicates which ones are active or NULL.

RegisterBitmap

2-158 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

Used to indicate the attributes that the SSM wants to receive notifications for when the attributes change.
BFS_REG_OPEN_COUNT

BFS_REG_DATA_LEN
BFS_REG_READ _COUNT
BFS_REG_WRITE_COUNT
BFS_REG_LINK_COUNT
BFS_REG_CREATE_TIME
BFS_REG_MODIFY_TIME
BFS_REG_WRITE_TIME
BFS_REG_READ_TIME
BFS_REG_OWNER_REC
BFS_REG_COS_ID
BFS_REG_ACCT
BFS_REG_SECURITY
This vector is also set to indicate which fields in the attributes structure have changed on notify requests.

If the REG_OWNER_REC field is set, then the SetRevMapFlags field in the bf_attrib struct will be set to in-
dicate which reverse map entries have changed.

Cellld
The client DCE cell identifier.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-159
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.13. Bitfile Owner Record - bfs_owner_rec_t

Description

This structure defines the reverse map entries for a bitfile and indicates which ones are active or NULL.

Format

The bitfile owner record has the following format:

typedef struct bfs_owner_rec {

signed32 RevMapCount;
unsigned32 Pad;
rev_map_t RevMap[BFS_NUM_REV_MAPS];

} bfs_owner_rec_t;

typedef struct rev_map {
byte RevMapld[BFS_REV_MAP_LEN];
}rev_map _t;

BFS_REV_MAP_LEN = 32;

RevMapCount

Specifies the number of valid reverse map entries.
Pad

Specifies the pad for 64-bit alignment.

RevMap[BFS_NUM_REV_MAPS]

Specifies the array of opaque reverse mapping fields supplied by a client.

2-160 December 2000

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.14. Bitfile Server Storage Class Attributes - bf _sc_attrib_t

Description

This structure contains storage class information for a specific storage hierarchy level at which the specified
bitfile exists.

Format

The Bitfile Server storage class attributes have the following format:

typedef struct bf_sc_attrib {
bf vv_attrib t VVAttrib[BFS_MAX_VV_TO_RETURN_AT LEVEL];

unsigned32 NumberOfVVs;
u_signed64 BytesAtLevel;
unsigned32 OptimumAccessSize;
unsigned32 StripeWidth;
u_signed64 StripeLength;
unsigned32 Flags;

} bf_sc_attrib_t;

VVAttrib

An array of virtual volume on which bitfile segments are contained.
NumberOfVVs

Specifies the number virtual volume entries in the array.

BytesAtl evel

Specifies the amount of data that exist at this level (in bytes).

OptimumAccessSize

Specifies the optimum access size of the storage class.

StripeWidth

Specifies the stripe width of the storage class.

StripeLength

Specifies the stripe length of the storage class.

Flags

The flags that defined the state of the fileset. Valid values include:
BFS BFATTRS LEVEL_IS DISK This is a disk storage level.
BFS BFATTRS_LEVEL IS TAPE This is a tape storage level.
BFS_BFATTRS_DATAEXIST_AT_LEVEL Data for the bitfile exists at this level.
BFS_BFATTRS_ADDITIONAL_VV_EXIST Data at this level is contained on more than

BFS_MAX VV_TO_RETURN_AT_LEVHKirtual volumes.
HPSS Programmer’s Reference, Vol. 1 December 2000 2-161

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.15. Bitfile Server Virtual Volume Attributes - bf vv_attrib_t

Description

This structure contains Bitfile Server virtual volume attributes for a specific storage level in the hierarchy.

Format

The bitfile virtual volume attributes have the following format:
typedef struct bf_vv_attrib {

hpssoid_t VVID;
signed32 RelPosition;
pv_list_t *PVList;

} bf_wv_attrib_t;

VVID

Specifies the virtual volume identifier.

RelPosition

Specifies the relative start position of first bitfile segment on this virtual volume.
PVList

A conformant array of physical volume attributes.

2-162 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.16. Storage Server Physical Volume Attributes - pv_list_element t

Description

This structure contains physical volume location information for specified physical volume.

Format

The storage server physical volume attributes have the following format:

typedef struct pv_list_element {
char Name[HPSS_PV_NAME_SIZE];
unsigned32 Flags;

} pv_list_element_t;

Name
Specifies the physical volume name.

Flags

Specifies the location of the physical volume. This field will be zero if the physical volume is in the robot,
or the bit corresponding to the value PVV_ON_SHELF will be set if the physical volume has been shelved.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-163
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.17. Storage Server Physical Volume Attributes Conformant Array -
pv_list_t

Description

The pv_list_t structure describes a template for a conformant array of Storage Server Physical Volume At-
tribute elements.

Format

The storage server physical volume attribute conformant array has the following format:
typedef struct pv_list {

signed32 Length;
pv_list_element_t* List[*];

} pv_list_t;

Length

Specifies the number of physical volume attribute elements in the array.
List

A conformant array of physical volume attribute elements.

2-164 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.18. Bitfile Server Statistics - bfs_stats t

Description

This structure contains statistical information which includes a count of stages, migrates, purges, and dele-
tions. In addition, the structure includes a timestamp indicating when the counts began.

Format

The Bitfile Server statistics have the following format:

typedef struct bfs_stats {

unsigned32 StageCount;
unsigned32 MigrationCount;
unsigned32 PurgeCount;
unsigned32 DeleteCount;

timestamp_sec_t TimelLastReset;
} bfs_stats_t;

StageCount

Specifies the number of stages which have occurred since the last reset.

MigrationCount

Specifies the number of migrations which have occurred since the last reset.
PurgeCount

Specifies the number of purges which have occurred since the last reset.
DeleteCount

Specifies the number of deletes which have occurred since the last reset.
Timel astReset

Specifies the time of the last reset (all counts were set to 0).

HPSS Programmer’s Reference, Vol. 1 December 2000 2-165
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.19. Account Record - acct_rec_t

Description

The account record contains the HPSS account identifier number.

Format

The API configuration structure has the following format:

typedef unsigned32 acct_rec_t;

2-166 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.20. API Configuration Structure — api_config_t

Description

The API configuration structure contains values that control optional features of the Client API configura-
tion.

Format

The API configuration structure has the following format:

typedef struct api_config {

long Flags;
long DebugValue;
long TransferType;
long NumRetries;
int BusyDelay;
int BusyRetries;
int TotalDelay;
int LimitedRetries;
long MaxConnections;
int ReuseDataConnections;
int UsePortRange;
long RetryStagelnp;
int DMAPWriteUpdates;
char ServerName[HPSS_MAX_DCE_NAME];
char DescName[HPSS_MAX_DESC_NAME];
char PrincipalName[HPSS_MAX_PRINCIPAL_NAME];
char KeytabPath[HPSS_MAX_PATH_NAME];
char DebugPath[HPSS_MAX_PATH_NAME];
char HostName[HPSS_MAX_HOST_NAME];
char RegistrySiteName[HPSS_MAX_DCE_NAME];
} api_config_t;
Flags

Contains a bitmap of configuration flags. Valid values include:

HPSS Programmer’s Reference, Vol. 1 December 2000 2-167
Release 4.2, Revision 1

Chapter 2. Client API Functions

APL_INIT_HSEC Client API should perform HPSS security initialization.
APL_INIT_CONN Client API should perform connection initialization.
APL_INIT_TRPC Client API should perform TRPC initialization.

API_ENABLE_LOGGING If logging compiled into Client API library, perform HPSS logging
on errors.

API_GLOBAL_FILETABLE Indicates whether Client APl was built using global or per-thread
file table (this flag is informational only - it cannot be set using
hpss_SetConfiguration).

API_USE_ENV Modify configuration based on environment variables.

API_DISABLE_CROSS_CELL If set, this flag prevents the Client API from contacting any servers
outside of the local cell. Once set, this flag cannot be unset. This
flag is set automatically when FTP or NDCG log-in without
security.

API_DISABLE_JUNCTIONS If set, this flag prevents the Client API from processing any
requests which require it to traverse a junction. Once set, this flag
cannot be unset. NFS will always set this flag explicitly.

DebugValue

If zero, indicates that Client API will not send debug messages to an output file; otherwise messages will
be sent (note that all debug messages are conditionally compiled into the library).

TransferType

Indicates what data transfer mechanism is to be used for transfers handled by the Client API. Valid values
include:

API_TRANSFER_TCP Use TCP/IP
API_TRANSFER_IPI3 Use IPI-3 over HIPPI
NumRetries

Used to control the number of retries to attempt when an operation fails. Currently this class of operation
includes library initialization and communication failures. A value of zero indicates that no retries are to be
performed and a value of negative one indicates that operation will be retried until successful.

BusyDelay
Used to control the number of seconds to delay between retry attempts.

BusyRetries

Used to control the number of retries to be performed when a request fails because the Bifile Server does
not currently have an available thread to handle that request. A value of zero indicates that no retries are
to be performed. A value of negative one indicates that retries should be attempted until either the request
succeeds of fails for another reason.

TotalDelay

Used to control the number of total seconds to continue retrying a request.

2-168 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

LimitedRetries

Used to control the number of retry attempts for limited retry type errors.

MaxConnections

Maximum number of connections for use by the HPSS connection management service.

ReuseConnections

Used to control whether TCP/IP connections are to be left as long as a file is opened or are to be closed after
each read or write request. A non-zero value will cause connections to remain open, while a zero will cause
connections to be closed.

UsePortRange

Used to control whether the HPSS Mover(s) should use the configured port range when making TCP/IP
connections for read and write requests. A non-zero value will cause the Mover(s) to use the port range. A
value of zero will cause the Mover(s) to allow the operating system to select the port number.

RetryStagelnp

Used to control whether retries are attempted on opens of files in a Class of Service that is configured for
background staging on open. A non-zero value indicates that open which would return -EINPROGRESS to
indicate the file is being staged will be retried. A value of zero indicates that the -EINPROGRESS return
code will be returned to the client.

DMAPWTriteUpdates

Controls the frequency of cache invalidates that are issued to the XDSM file system.
ServerName

Name to use when initializing HPSS security services.

DescName

Name to use when generating HPSS log messages.

PrincipalName

DCE principal name to use for HPSS security initialization.

KeytabPath
Pathname of the DCE security keytab file.

DebugPath

If generation of debug message is enabled, the pathname of the file to which log messages will be directed.
Special cases are "stdout" and "stderr".

HostName

Specifies the interface name to use for TCP/IP communications.

ReqistrySiteName

Specifies the security registry used when inserting security information into connection binding handles.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-169
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.21. Name Server ACL Conformant Array - ns_ ACLConfArray _t
Description

The ns_ACLConfArray_t structure describes a template for a conformant array of Name Server ACL en-
tries.

Format

The ns_ACLConfArray _t structure has the following format:

typedef struct {
signed32 Length;
ns_ACLEntry t ACLEntry[*;

} ns_ACLConfArray_t;

Length

Specifies the number of ACL entries in the array.

ACLEntry
The array of ACL entries.

2-170 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.22. Name Server Access Control List Entry - ns_ ACLEntry t

Description

The ns_ACLEnNtry_t structure describes a Name Server ACL entry. Each entry contains information such
as the type of entry (i.e., for a group or individual user), the identity and location of the user or group and
the permissions that are allowed.

Format

The ns_ACLEntry_t structure has the following format:
typedef struct ACLEntryTag {

unsigned char EntryType;
unsigned char Perms;
unsigned16 ExpirationDate;
unsigned32 Entryld;
unsigned32 Location;

struct ACLEntryTag *Next;
}ns_ACLEntry_t;

EntryType

Identifies the type of this ACL entry. These correspond to the DFS ACL tag types: user_obj,
user_obj_delegate, user, user_delegate, foreign user, foreign_user_delegate, group_obj,
group_obj_delegate, group, group_delegate, foreign_group, foreign_group_delegate, other_obj,
other_obj_delegate, foreign_other, foreign_other_delegate, any_other, any_other_delegate, mask_obj, or
unauthenticated.

Perms

Specifies the permissions or access rights.

ExpirationDate

Currently not used.

Entryld

Depending on the EntryType, it can specify an identifier (usually a UID or GID).
Location

Specifies the identifier of the DCE cell.

Next

Points to the next ACL Entry.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-171
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.23. Global Fileset Entry Structure — hpss_global_fsent t

Description

The global fileset entry structure contains global fileset information.

Format

The global fileset entry structure has the following format:

typedef struct {
u_signed64 Filesetld;
unsigned char FilesetName[HPSS_MAX_FS_NAME];
uuid_t GatewayUUID;
uuid_t NameServerUUID;

} hpss_global fsent t;

Filesetld
The unique fileset identifier.
FilesetName

The unique name of the fileset.

GatewayUUID
The identifier of the DMAP gateway that manages the fileset.

NameServerUuUlD

The identifier of the Name Server that manages the fileset.

2-172 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.24. Name Server Fileset Attribute Bits — ns_FilesetAttrBits_t

Description

Bits specifying the Name Server fileset attribute bits to retrieve or set.

Format
typedef u_signed64 ns_FilesetAttrBits_t;

HPSS Programmer’s Reference, Vol. 1 December 2000 2-173
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.25. Name Server Object Attribute Bits — ns_FilesetAttrBits_t
Description
Bits specifying the Name Server object attributes to retrieve or set.

Format
typedef u_signed64 ns_AttrBits t;

2-174 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2.

Client API Functions

2.3.26. Purge Lock Flag - purgelock_flag_t

Description

Flag specifying whether a file should have its purgelock status set or cleared.

Format

typedef enum {
PURGE_UNLOCK =0, /* purge unlock the file */
PURGE_LOCK [* purge lock the file */

} purgelock_flag_t;

HPSS Programmer’s Reference, Vol. 1 December 2000
Release 4.2, Revision 1

2-175

Chapter 2. Client API Functions

2.3.27. APl Name Specification — api_namespec_t

Description

The API Name Specification structure is used for converting HPSS cell and principal ids to/from their as-
sociated names. The API Name specification structure contains the translation type along with the prin-
cipal and cell information that is to be converted.

Format
typedef struct api_namespec {

namespec_type_t Type;

int Id;
int Cellld;
char Name[HPSS_MAX_DCE_NAME];
char CellName[HPSS_MAX_DCE_NAME];
} api_namespec t
Type
The type of translation that is requested. The valid values are:
NAMESPEC_CELL - Translate cell information only
NAMESPEC_USER - Translate user and cell information
NAMESPEC_GROUP - Translate group and cell information
NAMESPEC_SKIP - Do not translate this entry

Id
The uid or gid of the principal.

Cellld

The HPSS cell id where the principal resides.
Name
The name of the principal.

CellName

The name of the cell where the principal resides.

2-176 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.28. Bitfile Callback Address — bfs_callback addr_t

Description

The Bitfile Callback Address structure contains the host information, port number and an identification
number which facilitates call backs during a stage process.

Format

typedef struct bfs_callback addr {
unsigned32 addr;
unsigned16 port;
unsigned16 family;
signed32 id;

} bfs_callback_addr _t;
addr

Host address

port

Port number
family
Address family
id

Id to be returned during a callback.

HPSS Programmer’s Reference, Vol. 1 December 2000 2-177
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.29. HPSS Directory Entry — hpss_dirent_t

Description

The HPSS directory entry structure contains the directory’s name and a handle to the Name Server for this
directory. In addition, it contains the offset of the next directory entry.

Format
typedef struct hpss_dirent {
unsigned32 d_offset;
ns_ObjHandle_t d_handle;
unsigned16 d_reclen;
unsigned16 d_namelen;
char d_name[HPSS_MAX_ FILE_NAME];

} hpss_dirent_t

d_offset

The offset of the next directory entry.

d_handle

The handle to the Name Server for the directory.
d_reclen

The record length of the directory.

d_namelen

The number of characters in the directory name.
d_name

The name of the directory.

2-178 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.30. HPSS Security User Credentials — hsec_UserCred _t

Description

The HPSS Security User Credentials structure contains information about the user credentials. This infor-
mation can only be obtained by an authorized client using HPSS security mechanisms.

Format
typedef struct hsec_UserCred {
SecPWent_t SecPWent;
uuid_t SecUuid;
unsigned32 SeclLabel;
acct_rec_t DefAccount;
acct_rec_t CurAccount;
unsigned32 NumGroups;
long AltGroups[HPSS_NGROUPS_MAX];
unsigned32 DCECellid;

} hsec_UserCred_t

SecPWent

Security information about the principal.

SecUuid

Secure Unix user identification number.

SecLabel

Secure label that is associated with the SecUuid.

DefAccount

The accounting code that is used when a current account code has not been specified.
CurAccount

When a current accounting code is specified, this code is applied to new files or directories.

NumGroups

The number of groups to which this principal is a member.
AltGroups
An array of groups to which this principal is a member.

DCECellld
The DCE Cell Id where the principal resides

HPSS Programmer’s Reference, Vol. 1 December 2000 2-179
Release 4.2, Revision 1

Chapter 2. Client API Functions

2.3.31. Security Password Entry — SecPWent _t

Description

The Security Password Entry structure provides information needed to lookup a principal in the HPSS se-
curity registry.

Format

typedef struct hsec_PWent {
char Name[HPSS_MAX_USER_NAME];
unsigned32 vid;
unsigned32 Gid;

} SecPWent_t

Name

Name of the principal
Uid

User id of the principal
Gid

Group id of the principal

2-180 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

Chapter 3. 1/O Descriptor (1I0D) and I/0O Reply (IOR)

3.1. 1/O Descriptor Pumpose

The 1/0 Descriptor (I0D) is used to describe 170 requests within HPSS. The 10D contains the informa-
tion required to describe the function requested and the data sources and sinks for the request. The IOD is
a common structure that will be passed between Client API and Bitfile Server, Bitfile Server and Storage
Server, Storage Server and Mover, as well as Physical Volume Library and Mover.

In the general case of an HPSS client data transfer request, the Client API will send an 10D which
describes the client data address(es) for the transfer, as well as the piece(s) of the HPSS file requested. The
HPSS components will perform a series of mappings on the HPSS side, until the actual data source or sink
location (for a client read or write request, respectively) is determined. The Mover(s) will then use the cli-
ent addressing information to perform the data transfer.

For release 3, a capability is provided for the mover to reply with listen port addressing information as an
intermediate reply. Also, a flag value is provided to indicate a Mover-to-Mover protocol, which provides
transport selection and flow control between movers.

3.2. 1/0 Reply Pumpose

The 1/0 Reply (IOR) is used to return the state of a request at a particular moment. If the request has com-
pleted (due to correct completion or an unrecoverable error), the IOR will contain the final completion sta-
tus of the request.

An I0R will be returned at the completion of a request from each HPSS component that received an IOD
with the request. An IOR will also be returned as the result of a request to query the status of a request,
from each HPSS component that received an IOD with the initial request.

3.3. 1/0O Descriptor Components

The 170 Descriptor consists of these major parts:

= Request Description

= Source Descriptor List

= Sink Descriptor List

The Request Description contains information describing the request to be performed. This information
includes the function (e.g., read, write, set position), any flags and/or subfunction information required to
completely define the operation, and any other information required by the operation which is not a
description of the data source or sink.

The Source Descriptor List contains information which describes the source of a data transfer.

The Sink Descriptor List contains information which describes the sink of a data transfer.

HPSS Programmer’s Reference, Vol. 1 December 2000 3-1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

3.4. 1/0 Reply Components

The 170 Reply consists of these major parts:

= Request State

= Source State List

= Sink State List

The Request State contains information describing the status of the request as a whole. This information
will indicate whether the request is in progress, completed, waiting on a resource, encountered an unre-
coverable error, etc.

The Source State List contains information describing the status of each source descriptor involved in the
170 operation. Information will include overall status (e.g., complete, in progress), device positioning
information (if applicable), listen addresses (if applicable) and the number of bytes transferred.

The Sink State List contains information describing the status of each sink descriptor involved in the I/0

operation. Information will include overall status (e.g., complete, in progress), device positioning infor-
mation (if applicable), listen addresses (if applicable) and the number of bytes transferred.

3-2 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

3.5. Data Definitions

This section describes key internal data definitions and all externally used data definitions for the IOD and
IOR.

3.5.1. 1/O Descriptor (IOD) - 10D _t

Description

The IOD is a structure that is used to describe 1/0 requests. This structure contains parameters to describe
the function requested and the sources and sinks for the operation.

Format
The 10D has the following format:

typedef struct 10D {

signed32 RequestiD;
signed32 Function;
unsigned32 Flags;
requestspec_t *ReqgSpecinfo;
signed32 SrcDesclLength;
signed32 SinkDescLength;
srcsinkdesc _t *SrcDesclList;
srcsinkdesc _t *SinkDesclList;

}10D_t;

RequestiD

This field contains a request identifier used to distinguish requests from a given client.
Function

This field indicates the type of I/0 operation being requested. The following values are valid for this field:

IOD_READ Data is to be transferred to the initiator from the responder.
IOD_WRITE Data is to be transferred from the initiator to the responder.
IOD_DEVICESPECIFIC Device specific request (e.g., Write Tapemark).
IOD_GETDEVICEATTR Query device attributes (Storage Server / Mover only).
IOD_SETDEVICEATTR Set device attributes (Storage Server / Mover only).
IOD_ABORT Abort outstanding request (Storage Server / Mover only).

Flags

This field is a bit vector used to alter processing of the request. The possible bits that may be set are:

NO_LABEL CHECK Override the default label check processing.

HPSS Programmer’s Reference, Vol. 1 December 2000 3-3
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

REPLYWHENREADY Requests that the server ready listen ports and reply with
addressing information to those ports after they are established.

HOLD_RESOURCES For device specific and device attribute requests, indicates that
the device is to be held open by the mover task after completion
of the request. Otherwise, the device is freed when the request is
completed.

LAST_IN_XFER For read and write requests via IPI-3 transfers, indicates that the
10D contains the last byte in the client transfer.

RegSpecinfo

This structure contains information pertaining to information specific to the type of request.

typedef struct requestspec {
signed32 SubFunction;
signed32 Argument;
signed32 DevicelD;
u_signed64 Count;
u_signed64 SelectionFlags;

struct {
signed32InfoType;
union {
sighed32Reserved,;
char DisplayBuffer[16];
devdesc_attr_tDeviceAttr;
char VolumelD[16];
address_tReplyAddr;
} Reginfo_u;
} Reginfo_s;

} requestspec t;
SubFunction

This field indicates the device specific function to be performed. The following values are valid for

this field:
DEVICE_LOAD Load a physical volume into a drive.
DEVICE_UNLOAD Unload a physical volume from a drive.
DEVICE_FLUSH Ensure data previously written is flushed to the media.
DEVICE_WRITETM Write tape mark (tape only).

DEVICE_LOADDISPLAY load message to device’s display area.
DEVICE_READLABEL Read media label.
DEVICE_WRITELABEL Write media label.

DEVICE_CLEAR Zero portion of the media (disk only).

34 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

Argument

This field contains any additional information that is required to perform the requested operation.
This field varies based on request and is used internally.

DevicelD

This field describes the device to which the requested operation is to be performed. This field is also
used to specify the request ID for request status queries.

Count
This field contains the number of iterations to perform of the requested operation.

SelectionFlags

This field describes the fields within the DeviceAttr field that are to be updated during a device set
attributes request.

Reglinfo_s

Generated by the DCE IDL compiler, this structure contains a typed union used to pass request
specific information.

InfoType
This value will indicate what information is included in Reglnfo_u. Valid values include:
INFO_NONE Information union is unused for this request.

INFO_LOADDISPLAY Information is a buffer to be output on device display
area for DEVICE_LOADDISPLAY requests.

INFO_DEVICEATTR Information is a device attribute structure for
DEVICE_SETDEVICEATTR requests.

INFO_VOLUMEID Information is a volume label.
INFO_REPLYADDR Information is a reply network address.
Reglnfo_u

This union contains the specific information required to complete the requested operation.
The union elements include:

Reserved

This field is a place holder for requests that do not require any request specific
information.

DisplayBuffer

This field contains the character string to be output on the indicated devices
display area.

HPSS Programmer’s Reference, Vol. 1 December 2000 3-5
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

DeviceAttr

This structure is used for the Mover’s get device characteristics and set device char-
acteristics. See the Mover design document for further details.

VolumelD
This field contains the volume label to be written during a write label request.

ReplyAddr

This field contains the address to which the mover should reply with listen port
addressing information.

SrcDesclength

This field contains the number of items in SrcDescList.

SinkDescl ength

This field contains the number of items in SinkDescList.

SrcDescList

This list of structures defines the sources of a data transfer. See the description of the source/sink descrip-
tor, below.

SinkDescL ist

This list of structures defines the sinks of a data transfer. See the description of the source/sink descriptor,
below.

3.5.2. Source/Sink Descriptor - srcsinkdesc _t

Description

The source/sink descriptor contains information describing a contiguous segment of data within a
request. The structure contains addressing information, which varies depending on which module is cur-
rently handling the request.

Format

The Source/Sink Descriptor has the following format:

typedef struct srcsinkdesc {

unsigned32 Flags;
u_signed64 Offset;
u_signed64 Length;
address_t SrcSinkAddr;
struct srcsinkdesc *Next;
signed32 ServerDefined;
} srcsinkdesc _t;
Flags
3-6 December 2000 HPSS Programmer’s Reference, Vol. 1

Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

This field contains flags which affect the portion of the request defined by this descriptor.

HOLD_RESOURCES

CONTROL_ADDR

XFER_RESPONDER

XFEROPT_IP

XFEROPT_IPI3

XFEROPT_SHMEM

USE_PORT_RANGE

LAST_SEG_WRITE

Offset

When set, resources are not freed at the completion of the current
request. At the Storage Server level, this bit may be used to keep
removable media mounted across data access requests; at the
Mover level this bit may be used to keep network connections or
devices open across requests.

When set, use mover protocol to perform data transfer. The
address information contained in this source/sink descriptor will
be the peer mover listen port addressing information. Note that
for striped addresses, this flag must be set in the stripe address
entry itself.

When set, indicates that the client is requesting to be the responder
for the part of the data transfer corresponding to this descriptor.
This has consequences for IPI-3 transfers that may involve third
party data movement directly between a device and client.

When set, indicates that the client is capable of transferring data
using TCP/IP.

When set, indicates that the client is capable of transferring data
using IP1-3 over HIPPI.

When set, indicates that the client is capable of transferring data
using a shared memory segment.

When set, indicates that the Mover should use the configured
TCP/IP port range when making connections to the client.

When set, indicates that the write operation is the last that will be
written to the tape storage segment. The Tape Storage Server and
Mover use this flag to enhance performance by writing tape marks
and advancing to the next tape section after transferring the data,
rather than doing these steps in a separate tape write operation.

This field contains the offset within the request (described by the 10D) at which the data described by this
source/sink descriptor begins. This field will be used in determining the data tag and coordinating the

source and sink lists.

Length

The length of the data, in bytes, described by this source/sink descriptor.

SrcSinkAddr

This field contains addressing information for the data described by this source/sink descriptor. See the
description of the address structure, below.

Next

This field contains a pointer to the next descriptor in the source or sink list. This field is necessary for use

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

December 2000 3-7

Chapter 3.

I/O Descriptor (IOD) and I/O Reply (I0R)

by the DCE encoding code.

ServerDefined

This field contains a value, which is provided by the client, which will be returned upon completion of the
request. The receiving server does not examine this field in any way.

3.5.3.

Description

Address Structure - address t

The address structure contains addressing information that will be included in the source/sink descriptor
to define the sources and sinks of data transfers. The structure contains a union of possible types of
addresses; which addressing is used varies depending on the configuration (primarily for network
addressing) and which HPSS component is acting on the structure.

Format

The Address Structure has the following format:

typedef struct address {

signed32Type;

union {
netaddress_t
ipiaddress_t
piofsaddress_t
fileaddress_t
ssegaddress_t
vvaddress_t
pvaddress_t
devaddress _t
memaddress_t

stripeaddress_t
clientfileaddress_t

shmaddress _t
Iftaddress_t
} Addr_u;

} address _t;

Type

NetAddr;
IPIAddr;
PIOFSAddr;

FileAddr;
SSegAddr;
VVolAddr;
PVolAddr;
DevAddr;

MemAddr;
StripeAddr;
ClientFileAddr;
ShmAddr;
LFTAddress;

This field indicates the type of address contained in Addr_u. Values are:

NET_ADDRESS
IPI_ADDRESS
PIOFS_ADDRESS
FILE_ADDRESS
SSEG_ADDRESS
VVOL_ADDRESS
PVOL_ADDRESS
DEVICE_ADDRESS
STRIPE_ADDRESS
MEMORY_ADDRESS

TCP/IP

IPI-3

PIOFS file

bitfile

Storage segment
virtual volume
physical volume
device

stripe

memory buffer

3-8

December 2000

HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

CLIENTFILE_ADDRESS client file
SHM_ADDRESS shared memory segments
LFT_ADDRESS local file transfer

NetAddr

This structure contains IP addressing information, and will be primarily used as the addressing informa-
tion that the Mover must use to connect to the client mover. The structure has the following format:

typedef struct netaddress {
unsigned32SockTransferID;
struct {
unsigned32 addr;
unsigned16 port;
unsigned16 family;
} SockAddr;
u_signed64SockOffset;
} netaddress_t;

SockTransferlD

This field contains the transfer ID which will be used in the data tag when the Mover connects to
the client mover for device transfers. It will be used to identify and verify the data being
transferred.

SockAddr

This field contains the IP address information as usually represented by the standard sockaddr
structure. Itidentifies the address to which the Mover will connect to perform the data transfer. The
fields in this structure directly correspond to the fields in the standard structure and are assumed
to be in network byte order.

SockOffset

This field contains the offset to be used in the data tag when communicating with the client mover
to perform the data transfer. If the logical offset within the entire request is enough information,
this field may not be necessary.

IPIAddr

This field contains IPI-3 addressing information. It will be used for clients or devices which are using IPI-
3 data transfer protocols. The structure has the following format:

typedef struct ipiaddress {
unsigned32IPI3TransferID;

struct {
signed16 Interface;
char Name[32];
HPI3Addr;

u_signed64IPI30ffset;
} ipiaddress_t;

IP13TransferlD

HPSS Programmer’s Reference, Vol. 1 December 2000 3-9
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

This field contains the transfer ID which will be used in the IPI-3 header for the data described by
this source/sink descriptor.

IPI3Addr

This field contains the IPI-3 addressing information necessary to perform the data transfer. The
subfields include:

Interface
This field contains the IPI-3 interface to be used for the transfer (e.g., “IPI3_HIPPI”).

Name

This field contains the name of the client machine (used to look up the correct i-field in the
IPI-3 configuration).

IP130ffset

This field contains the offset to be used in the IPI-3 header for the data described by this source/
sink descriptor.

PIOFSAddr

This field contains the information necessary to describe a piece of a logical partition of a PIOFS file. The
structure has the following format:

typedef struct piofsaddress {
u_signed64 Offset;
unsigned32 Flags;
unsigned32 Perms;
unsigned32 Vbs;
unsigned32 Vn;
unsigned32 Hbs;
unsigned32 Hn;
unsigned32 SubFile;
unsigned32 ChkptFlag;
char Name[255];

} piofsaddress_t;

Reference Installing, Managing, and Using the IBM AlX Parallel 1/0 File System for details of this
structure.

Offset

This field contains the offset within the PIOFS subfile.

Flags

This field contains flags which affect the operation of PIOFS import/export operations.

Perms

3-10 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

This field contains the permissions to be used when opening the PIOFS file.

Vbs

This field contains the PIOFS vertical block size.

<

Vn

This field contains the number of vertical partitions within the PIOFS subfile.
Hbs

This field contains the PIOFS horizontal block size.

Hn

This field contains the number of horizontal partitions within the PIOFS subfile.

SubFile

This field contains the PIOFS subfile identifier.
ChkptFlag
This field indicates whether PIOFS will checkpoint while performing the import or export.

Name

This field contains the name of the PIOFS file.
FileAddress
This field contains information which describes a contiguous piece of an HPSS bitfile. This information will
be sent by the Client API to the Bitfile Server with a client read or write request. The Bitfile Server will map
this information into a series of logical segment addresses. This structure has the following format:
typedef struct fileaddress {
hpss_object_handle_t BitFileHandle;

u_signed64 BitFileOffset;
} fileaddress _t;

BitFileHandle
This field contains the open bitfile handle for which this request applies.

BitFileOffset

This field contains the offset into the bitfile at which the data described by the source/sink
descriptor begins.

SSegAddr

This structure contains storage segment addressing information. It will be mapped into virtual volume

HPSS Programmer’s Reference, Vol. 1 December 2000 3-11
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

addressing information. The structure has the following format:

typedef struct ssegaddress {

hpssoid t SSeqID;
u_signed64 SSegOffset;

} ssegaddress _t;

SSeqglD

This field contains the storage segment ID.

SSegOffset

This field contains the offset, in bytes, within the storage segment at which the data begins.

VVolAddr

This structure contains virtual volume addressing information. The Storage Server will map this informa-
tion into physical volume addressing information. The structure has the following format:

typedef struct vvoladdress {

hpssoid_t VVolID;
positiondesc_t VVolPosition;

} vwoladdress_t;

VVollD
This field contains the virtual volume ID.
VVolPosition

This field contains the position within the virtual volume at which the data begins. See the Mover
design document for further details.

PVolAddr

This structure contains physical volume addressing information. The Storage Server will map this infor-
mation into device addressing information and pass that on to the appropriate Mover. The structure has
the following format:

typedef struct pvoladdress {

char PVolName[HPSS_PV_NAME_SIZE];
positiondesc_t PVolPosition;

} pvoladdress_t;

PVolName

This field contains the physical volume name.

PVolPosition

This field contains the position on the physical volume at which the data begins. See the Mover
design document for further details.

3-12

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

DevAddr

This structure contains device addressing information. The Mover uses this information to access the
requested data. The structure has the following format:

typedef struct devaddress {

unsigned32 Flags;

signed32 DevicelD;

signed32 BlockSize;

signed32 BlocksBetweenTMs;

char VolumelD[HPSS_PV_NAME_SIZE];
positiondesc_t DevicePosition;

} devaddress_t;

Flags

This field contains values which alter the way the device is handled. Valid values include (note that
only one of the volume type flags may be specified - i.e., that portion of the Flags field is NOT a bit

vector):
MVR_DEV_HPSS_VOL Indicates that the media loaded on the device
is in HPSS format.
MVR_DEV_UNITREE_VOL Indicates that the media loaded on the device
is in UniTree format.
MVR_DEV_VOL_USE_BLK_HDRS For UniTree formatted media only, indicates
that the tape does not include the per block
tape headers.
DevicelD

This field contains the device ID.
BlockSize
This field contains the block size, in bytes, to use during write requests.

BlocksBetweenTMs

This field contains the number of blocks to be written between tape marks for this request.
VolumelD

This field contains the volume label for which this request applies. This value is used to check that
the expected media is loaded on the requested device.

DevicePosition

This field contains device positioning information describing the location on the device that the
data begins. See the Mover design document for further details.

MemAddr

HPSS Programmer’s Reference, Vol. 1 December 2000 3-13
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

This structure contains information describing a client memory address. The structure has the following
format:

typedef struct memaddress {

char *MemoryPtr;
} memaddress_t;

MemoryPtr
This field contains the address of the client's memory buffer.
ClientFileAddr

This structure contains information describing data in a file as represented through the Client APIl. The
structure has the following format:

typedef struct clientfileaddress {
signed32 FileDes;
u_signed64 FileOffset;
} clientfileaddress_t;
FileDes

This field contains the Client API file descriptor, as returned from hpss_Open. See section 2.1.28
for further details.

FileOffset
This field contains the file offset at which the request begins.
ShmAddr

This structure contains information describing a shared memory segment address. The structure has the
following format:

typedef struct shmaddress {
unsigned32 Flags;
unsigned32 ShmiD;
unsigned32 ShmoOffset;
} shmaddress t;

Flags
This field contains flags which affect the handling of this address. Valid values include:
SHM_COPY_DATA indicates that the mover should copy data to or from the shared
memory segment (i.e., do not perform device 1/0 directly from

the shared memory segment).

ShmID

This field contains the shared memory segment identifier.

ShmOffset

3-14 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

This field contains the offset within the shared memory segment at which the client data begins
LFTAddress
This structure contains information describing a local file address. The structure has the following format:

typedef struct Iftaddress {

u_signed64 Offset;

unsigned32 Flags;

unsigned32 Uid;

unsigned32 Gid,;

unsigned32 Cellld;

char PathName[HPSS_MAX_PATH_NAME];
} Iftaddress_t;

Offset

This field contains the offset within the file at which the client data begins.

Flags

This field contains flags which affect the handling of this address.
Currently there are no defined flags for this address type.

Uid

This field contains the client user identifier .

Gid

This field contains the client group identifier.

Cellld

This field contains the client DCE Cell identifier.
PathName
This field contains the path name of the file that will be used for the data transfer.

StripeAddr

This structure contains information that describes data striped across a number of units (either devices or
network addresses). The structure is intended to allow description of striped data without enumerating
each piece of data which makes up the request. The structure has the following format:

typedef struct stripeaddress {

u_signed64 BlockSize;
u_signed64 StripeWidth;
signed32 AddrListLength;
unsigned32 Flags;
straddress _t Addr;

struct stripeaddress_t*Next;

HPSS Programmer’s Reference, Vol. 1 December 2000 3-15
Release 4.2, Revision 1

Chapter 3.

I/O Descriptor (IOD) and I/O Reply (I0R)

} stripeaddress _t;

BlockSize

This field contains the amount of contiguous data, in bytes, that is written to each member of the

stripe group.

StripeWidth

This field contains the number of elements that make up the stripe group. The total amount of data
written in one stripe is represented by BlockSize * StripeWidth.

AddrListl ength

This field contains the number of addresses contained in the stripe address list. Valid values are 1
(used when passed to a Mover controlling one device in a device stripe) and StripeWidth (used to
describe the entire stripe group; usually this will be provided by the initiating end of a transfer to
supply the list of available addresses to which the responder must connect to perform the data

transfer).

Flags

This field contains values that alter the processing of this address. Valid values include:

XFER_RESPONDER

XFEROPT_IP

XFEROPT_IPI3

XFEROPT_SHMEM

USE_PORT_RANGE

Addr

When set, indicates that the client is requesting to be the
responder for the part of the data transfer corresponding to this
address. This has consequences for IP1-3 transfers that may
involve third party data movement directly between a device and
client.

When set, indicates that the client is capable of transferring data
using TCP/IP.

When set, indicates that the client is capable of transferring data
using IP1-3 over HIPPI.

When set, indicates that the client is capable of transferring data
using a shared memory segment.

When set, indicates that the Mover should use the configured
TCP/IP port range when making connections to the client.

This field contains the addressing information which describes the elements of the stripe group.
The structure has the following format:

typedef struct straddress {
signed32Type;

union {

netaddress_t
ipiaddress_t
piofsaddress_t
fileaddress_t

NetAddr;
IPIAddr;
PIOFSAddr;

FileAddr;

3-16

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

ssegaddress_t SSegAddr;
vvaddress_t VVolAddr;
pvaddress_t PVolAddr;
devaddress_t DevAddr;
memaddress_t MemAddr;
clientfileaddress_t ClientFileAddr;
shmaddress_t ShmAddr;
Iftaddress_t LFTAttress;
} Addr_u;

} straddress _t;

Where each of the fields in the Addr_u union are identical to those described in the address_t struc-
ture, above.

Next

This field contains a pointer to the next address in the stripe address list.

3.5.4. 1/0 Reply (IOR) - IOR _t

Description

The IOR is a structure that is used to describe the state of 1/0 requests. This structure contains parameters
to describe the state of the request as a whole, as well as to describe the state of the individual subtransfers
described by source and sink descriptors in the 10D associated with the original request.

Format

The IOR has the following format:

typedef struct IOR {

signed32 RequestiD;
signed32 Flags;

signed32 Status;
regspecreply_t *RegSpecReply;
signed32 SrcReplyLength;
signed32 SinkReplyLength;

srcsinkreply _t *SrcReplyList;
srcsinkreply _t *SinkReplyList;
}IOR_t;
RequestiD
This field contains the value of the RequestID field that was passed with the IOD. This field is used to
identify the reply.
Flags
This field is a bit vector used to describe how to interpret the rest of the IOR. Valid values to be used in the

vector are:

IOR_COMPLETE If set, this IOR is the last one associated with the RequestID.
Otherwise, there will be additional replies following this IOR.

HPSS Programmer’s Reference, Vol. 1 December 2000 3-17
Release 4.2, Revision 1

Chapte

r3. I/O Descriptor (IOD) and I/O Reply (I0R)

Status

IOR_ERROR

IOR_NOT_PROCESSED
IOR_GAPINFO_VALID

IOR_FOREIGN_LABEL

IOR_NO_LABEL

IOR_NON_ANSI_LABEL

IOR_END_OF SEGMENT

If set, an error was detected during the processing of the request.
The Status field will contain a value that describes the error.

The 10D corresponding to this IOR was not processed.
The request specific reply contains gap (file hole) information.

The media contains a valid ANSI volume label that was not
written by HPSS. This value is for read label requests only.

The media does not contain an 80-byte volume label. This value
is for read label requests only.

The media contain an 80-byte volume label, but does not meet
ANSI specifications. This value is for read label requests only.

This flag is used by the Tape Storage Server to inform its caller
that the tape storage segment referred to by the IOR has reached
its end and cannot be written further.

This field contains the status of the request. A value of 0 (zero) indicates that the request was processed or
completed without error. Any other value will describe an error condition that occurred during process-
ing of the request.

RegSpecReply

This structure contains information to describe request specific status of an operation.

typedef struct reqspecreply {

signed32Flags;
signed32Status;
signed32CountProcessed,;
signed32RegListLength;
struct {
signed32ReqgReplyType;
union {
signed32 Reserved,;
srcsinkdesc _t *ListenList;
devdesc_attr t DeviceAittr;
char VolumelD[HPSS_PV_NAME_SIZE];
gapinfo_t Gaplnfo;
} ReqgReply_u;
} ReqReply_s;

} reqspecreply _t;

Flags

This field is a bit vector which describes how the rest of the structure is to be interpreted. Valid
values to be used in the vector are:

IOR_POSITIONVALID

If set, the Position field in the device attribute structure
contains a valid entry. If clear, the contents of the Position

3-18

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

field is undefined.

IOR_ENDPOSITION If set and IOR_POSITIONVALID is also set, the Position
field describes the position of the device at the end of the
request. If clear and IOR_POSITIONVALID is set, the
Position field in the device attributes structure describes
the position of the device at the beginning of the request.

IOR_ERROR If set, an error was detected during the processing of the
request. The Status field will contain a value that
describes the error.

IOR_GAPINFO_VALID The request specific reply contains gap (file hole)
information.

IOR_FOREIGN_LABEL The media contains a valid ANSI label that was not
written by HPSS. This value is for read label requests
only.

IOR_NO_LABEL The media does not contain an 80-byte label. This value
is for read label requests only.

IOR_NON_ANSI_LABEL The media contain an 80-byte label, but does not meet

ANSI specifications. This value is for read label requests
only.

Status

This field contains the device specific status of the request. A value of 0 (zero) indicates that the

request was processed without error (or completed without error). Any other value will describe

an error condition that occurred during processing of the request.

CountProcessed

This field contains the number of iterations of the requested operation that have been processed.

RegListl ength

This field contains the length of a list in the ReqReply_u union. This is used for describing the
length of the ListenList field.

RegReply_s

This field contains a typed union used to return request specific status information. This structure
is generated by the DCE IDL compiler.

RepReplyType

This field contains indication of the type of information included in the following union.
Valid values include:

REPLY_NONE No further information is returned.
REPLY_LISTENLIST Listen address information is returned. This will be
HPSS Programmer’s Reference, Vol. 1 December 2000 3-19

Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

SrcReplyLength

returned when |IOD_REPLYWHENREADY is speci-
fied in the requesting 10D.

REPLY_DEVICEATTR Device attributes are returned.
REPLY_VOLUMEID Volume label information is returned.

REPLY_GAPINFO Information about an unwritten hole in a file is
returned for a read request.

RegReply_u

This union contains device specific reply information. The union elements include:

Reserved

This field is a place holder used when no request specific status information is
returned.

ListenList

This list of structures contains the listen addresses which the responder has estab-
lished and to which part of the request each address applies.

DeviceAttr

This structure contains device attribute values. See the Mover design document
for a description of this structure.

VolumelD
This structure contains the volume label of the media.

Gaplinfo

This structure contains information describing an unwritten hole in a file that is
subsequently read. This information is returned instead of sending NULL bytes
to the requestor. The structure has the following format:

typedef struct gapinfo {
u_signed64 Offset;
u_signed64 Length;
} gapinfo_t;
Offset

This structure contains the offset within the transfer at which the hole
starts.

Length

This structure contains the length of the hole.

3-20

December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 3. I/O Descriptor (I0D) and 1/0 Reply (10OR)

This field contains the number of replies in SrcReplyList.

SinkReplyl ength

This field contains the number of replies in SinkReplyList.

SrcReplyList

This list of structures describes the state of each source of a data transfer. See the description of the
source/sink reply, below. There will be one source reply list entry for each source request list entry that
was received in the request 10D.

SinkReplyL.ist

This list of structures describes the state of each sink of a data transfer. See the description of the source/
sink reply, below. There will be one sink reply list entry for each sink request list entry that was received in
the request IOD.

3.5.5. Source/Sink Reply - srcsinkreply _t
Description

The source/sink reply contains information describing how much of each source and sink request list
entry has completed and any error that was encountered during the processing of the request.

Format
The Source/Sink Reply has the following format:

typedef struct srcsinkreply {

signed32 Flags;
signed32 Status;
u_signed64 BytesMoved;
positiondesc_t Position;

struct srcsinkreply _t *Next;
} srcsinkreply _t;

Flags

This field is a bit vector that describes how the state of the request list entry, as well as how the rest of the
structure is to be interpreted. Valid values for the vector are:

IOR_COMPLETE If set, the processing for this request list entry is complete.
If clear, this request list entry is still in progress.

IOR_ERROR If set, an error was encountered processing this process
request list entry and the Status field contains a value that
describes that error. If clear, no error has been encoun-
tered while processing this request list entry.

POSITIONVALID If set, the Position field contains valid device positioning
information. If clear, the contents of the Position field is
undefined.

HPSS Programmer’s Reference, Vol. 1 December 2000 3-21

Release 4.2, Revision 1

Chapter 3. I/O Descriptor (IOD) and I/O Reply (I0R)

ENDPOSITION If set, the contents of the Position field describe the posi-
tion of the device at the end of the request. If clear, the
contents of the Position field describe the position of the
device at the start of the request.

Status

This field contains a value that describes the current state of the request list entry. A value of 0 (zero) indi-
cates that no errors have been encountered during the processing of this request. Any other value
describes an error encounter during processing.

BytesMoved

This field contains the number of bytes of data for this request list entry that have been successfully trans-
ferred.

Position

This field contains device positioning information. This information can be later used to position the
device to access the data. See the Mover design document for further details.

Next

This field contains a pointer to the next entry in the source or sink reply list. This field is used by the DCE
encoding routines.

3-22 December 2000 HPSS Programmer’s Reference, Vol. 1
Release 4.2, Revision 1

Chapter 4. Supplemental Data Transfer Functions

Chapter 4. Supplemental Data fansfer Functions

This chapter specifies support APIs to facilitate data transfers. Applications which use hpss_ReadList or
hpss_WriteList are potential users of these functions. Specifically, the following information is provided:

= Application Programming Interface (API)
= Data Definitions

=